抗震技術論文范文

時間:2023-04-12 06:02:07

導語:如何才能寫好一篇抗震技術論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

抗震技術論文

篇1

關鍵詞:建筑結構;抗震設計;相關問題;

中圖分類號:TU318 文獻標識碼:A

引言:由于開發商對于建筑物的地震破壞原因和破壞程度沒有足夠的了解,導致建筑物在抗震設計方面存在十分大的困難。所以,我們不僅要追求建筑物的造型美觀,還有考慮建筑物的抗震設計。要為人們營造一個安全舒適的生活環境。針對地震問題我們要在房屋結構找突破點。只有設計出抗震、牢固的建筑結構,才能保障人類的人身安全。

一、房屋建筑結構設計相關因素分析

建筑物按建筑結構分類可分為:砌體結構、磚混結構、鋼筋混凝土結構、鋼結構等。建筑物結構形式的確定,與其抗震能力是密切相關的。相關的科學研究表明,在遭遇相同等級的地震災害后,采用鋼結構的建筑物受損壞的程度明顯要低于鋼筋混凝土結構的建筑物。日本也是一個多地震的國家,其鋼結構的房屋建筑占全國建筑的半數以上,也是其在遭遇地震后人員傷亡較少的主要原因之一。目前,我國的建筑抗震系數系統依舊是不完善的,不能確保結構設計人員準確、有效地應用。歷次地震災害表明,影響抗震系數的因素是很多的,比如其抗震的等級、建筑物的類別、場地類別、建筑物總高度等。為了促進其實際工作的需要,應對各種相關因素和相關參數展開一系列的優化分析,得到一個最優的設計方案。房屋建筑的抗震性能與許多因素有關系,比如其建筑的體型設計。汶川地震震害表明 , 許多平面形狀復雜 , 例如平面上的較大外凸和凹陷、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。海城地震和唐山地震中有不少這樣的震例。而平面形狀簡單規則、傳力途徑明確的建筑在地震中都未出現較重的破壞;有的甚至保持完好。上述情況表明,很多損害嚴重的建筑物的設計方案不是很合理,如果能夠選擇一個好的設計方案,震后損失可能會減小很多。

二、建筑結構抗震設計的要點

在我國,對于建筑物抗震設計的要求是采取“三水準設防、兩階段設計”的標準。在這種標準的影響下,建筑結構設計經歷了柔性設計、剛性設計、結構控制設計和延性設計四個階段。但是由于地震產生了很多不確定因素,導致建筑結構存在非常大的偶然性和復雜性,甚至還有計算模擬與實際情況的不符的情況出現,導致計算結果誤差很大。所以,我們不僅要考慮建筑物良好的概念設計,還要提高建筑結構抗震性能。具備完善的建筑結構體系。一個良好的建筑體系,對于建筑業是十分有必要的。在實際的建筑抗震設計時,要注重依賴建筑結構體系的協同工作,從而使建筑物中的每個構件都能夠共同工作。所以,這就需要建筑結構構件在允許受力的情況下不僅能夠具有良好的耐久性,還要能夠在高壓,強力的作用下共同工作。在砌體結構的建筑中避免建筑結構單純的依靠建筑結構自身剛度來承受載荷。充分提高建筑物材料利用率的協同工作。從建筑物抗震設計經驗表明,材料的利用率越高,結構的協同工作能力也就越高。

三、建筑結構抗震設計中的主要問題

1、建筑結構體系的合理選擇。建筑結構設計中最主要的一方面就是結構體系的選擇,它的合理選擇決定著建筑物的安全性。對于建筑結構體系的合理選擇應注意以下兩個方面的設計:(l)體系應具有合理的地震傳遞途徑和明確的計算簡圖。在這個過程當中,房屋內部結構的布置,應使得更多的受力在主梁上,并且使垂直重力以最短的路徑傳遞到主受力部位;豎向構件的布置,要讓豎向構件的壓應力接近均勻(2)建筑體系應具有合理的強度。一個良好的建筑物必須要有合理的強度進行支撐,一些建筑的薄弱部位要由合理的強度防止:在框架結構設計方面,要保證節點不受破壞,要使梁、柱端的塑性盡可能的分散;對于容易出現的薄弱環節,必須提高薄弱部位的抗震能力。

2、抗震場地的選擇。抗震場地的選擇直接影響建筑物的抗震設計工作,應選擇有利的抗震場地,要避開對建筑抗震不利的地段。地震對于地面的危害是十分巨大的。地震造成的地裂和地表錯動,直接使得房屋倒塌,結構損壞。所以,選擇抗震場地不能選擇易液化土地、軟弱場地、狀態明顯不均勻等場地;如果不能避免不理的場地,可以采用適當的抗震措施進行加強強度:對于地震時有可能存在的地裂或者滑坡的場地,必須采取科學合理的措施進行穩定;如果地基需要建立在最近填土和土層十分不均勻或者軟弱粘性土層時,必須采用樁基、地基加固和加強基礎和上部結構的處理措施。

建筑工程選址應注意的問題:四川汶川地震的震害情況表明,那些建在斷裂帶上和斷裂帶沿線的建筑物都完全倒塌,破壞極其嚴重。因此,建筑物建設地點的確定是極其重要的,它是決定建筑物抗震性能的前提條件,只有正確的選址方案,才能保證建筑物滿足建筑抗震設計的相關要求,保證其安全性、可靠性。選擇建筑場地時應根據工程的實際需要和工程地質、地震活動情況等相關資料,選擇對建筑物抗震有利的地段,避開對抗震不利的地段,嚴禁在地震斷裂帶及斷裂帶沿線附近建造甲、乙、丙類建筑物。應避開地震時可能發生山體滑坡、崩塌、地陷、地裂、泥石流等次生災害地段。汶川地震發生時,北川老縣城發生規模較大的山體滑坡,王家巖山體在地震作用下瞬間崩塌,崩塌的山體傾瀉而下瞬間摧毀山下及周邊的建筑物,北川老縣城的 5個街區的大部分建筑物被厚厚的土體掩埋,造成大量人員傷亡。這樣的結果不是靠提高抗震設防等級、提高建筑物的抗震性能和措施所能避免的。所以避開此類危險地段,才能避免因選址不當所造成的嚴重的人員傷亡和財產損失。

3、重視建筑平面布置的規則性。在建筑平面布置方面,應盡可能的采用抗震概念設計原則,不能使用嚴重不規則的設計方案。有關資料表明,對于一些樓板布局不夠規范時,要采取相應的樓板計算模型;對于平面不規則、立體不規則的建筑結構,必須采用空間結構計算模型。結構的規則性具體分為三個部分:第一是建筑主體必須具備良好的抗壓能力,側力結構不能變形,要盡可能的均勻;第二是建筑主體抗側力結構的平面布置,建筑主體抗側力結構的布置要注重同一側的強度要均勻;第三是建筑主體抗側力結構的布置要與周圍的結構具有相同的剛度,必須保障良好的抗扭剛度。總之,重視建筑平面布置的規則性對于建筑的抗震設計十分重要。

建筑物平面設計應該注意的問題:建筑物的平面布置規則與否、是否對稱和具有良好的整體性,也是影響建筑物抗震性能的重要因素之一。例如酒店、公寓、商場、住宅、體育館等不同建筑物的使用功能不同,其平面布置也千變萬化,其柱距、開間、進深、隔墻的布置、樓梯的位置、電梯井的布置等也有很大差別,如果柱子、墻體等布置不對稱、不規則,使得平面剛度急劇變化,遭遇地震后,將發生嚴重的扭轉破壞。因此,建筑設計時,應使柱子和抗震墻(剪力墻)等抗側力構件均勻、對稱布置,剛度較大的樓梯間、電梯井應盡可能居中布置,不要布置在建筑物的轉角處。要盡可能作到使結構的質量和剛度分布均勻、對稱協調,避免突變,防止在地震作用下產生扭轉效應。

4、建筑物豎向設計應該注意的問題

建筑物的豎向布置設計也將對其抗震性能產生巨大的影響。近些年來,由于國民經濟的迅速發展,商場、寫字樓等高層、超高層建筑越來越多,其要求底層或下面幾層大開間、大空間,這就形成了建筑物下面幾層柱子和抗震墻(剪力墻)較少,層間質量和抗側剛度沿建筑物高度分布不均勻,在抗側剛度較差的樓層形成了對抗震極為不利的薄弱層,在地震作用下,引起較為嚴重的破壞。汶川地震中,有許多底層框架—抗震墻砌體房屋底層柱子直接破壞,建筑物由原來的 4 層直接變為 3層。主要原因就是,沿著建筑物高度方向,質量和抗側剛度發生突變,底層柱子較少,抗側剛度較小,地震作用下,底層柱子直接壞掉。所以,建筑物的豎向布置設計時,應盡可能使其沿豎向的抗側剛度分布比較均勻,抗震墻(剪力墻)并使其能沿豎向貫通到建筑底部,不宜中斷或不到底,盡量避免某一樓層抗側剛度過小,以避免在地震作用下,因薄弱層的存在引起建筑物的倒塌。

四、提高建筑結構抗震能力的建議

建筑結構抗震設計是在不斷的實例驗證中逐漸分析,日益總結歸納出來的。在目前的房屋建設當中,抗震設計是十分有必要的。所以,建筑抗震設計在建筑設計中應該引起十分重視。為了設計出高抗震性的建筑物,在我看來需要注意以三點:第一,科學合理的建筑布局是不可缺少的,于此同時還有保證各個主要受力物體處在同一平面,在地震來臨時要能禁得住壓力。在墻段沒有發揮作用之前,需要依照“強墻弱梁”的標準實施加強建筑物的承受力,防止地震強大的破壞力。第二,要按照不同的抗震等級,對梁、柱以及墻的節點使用相對應的抗震措施,確保建筑結構在地震作用下達到相關標準。為了保障鋼筋混凝土在地震作用下不受破壞,要科學合理的添加合適的化學試劑,加強混凝土的強度與剛度,還有注意構造配筋的要求,尤其是要加強節點的構造措施。第三,必須設置多層抗震防線,一個良好的抗震體系對于地震的壓力是十分重要的。抗震體系就如果人類身體的三道防線,不同等級的地震采取不同的防線。第一層不行,還有多層防線保護。這樣的保護體系對于防震將是十分有效的。

五、結語

通過多年對于建筑結構抗震設計的研究,我國已經逐漸形成了自己的一套較為先進的、有效的抗震設計方法并日趨成熟,但是也有很多不足之處,需要我們在實踐中加以完善。總之,要確保建筑結構中抗震設計能高效完成,應在遵循相關建筑抗震規范要求的原則上,進行科學的、合理的設計,確保建筑物具有穩定的、可靠的抗震性能,達到建筑物小震不壞、中震可修、大震不倒的標準。我們有理由相信,隨著相關技術人員抗震設計水平的不斷提高,我國的建筑工程結構抗震設計也會邁上更高的臺階。

參考文獻:

[l]倪廣林.對建筑結構抗震設計的若干思考田.山西建筑,2010.

篇2

關鍵詞:高層建筑,建筑結構,抗震設計

 

地震是一種隨機振動,所以建筑結構設計人員為防止、減少地震給建筑造成的危害, 就需要分析研究建筑抗震問題不斷總結工程經驗,妥善處理這一工程問題。

一、實行建筑抗震設計規范,總結工程經驗妥善處理工程問題:

(一)選擇有利的抗震場地

地震造成建筑物的破壞, 除地震動直接引起的結構破壞外,場地條件也是一個重要的原因。地震引起的地表錯動與地裂,地基土的小均勻沉陷, 滑坡和粉、砂土液化等。科技論文。因此,應選擇對建筑抗震有利的地段, 應避開對抗震不利地段。當無法避開時, 應采取適當的抗震加強措施,應根據抗震設防類別、地基液化等級,分別采取加強地基和上部結構整體性和剛度、部分消除或全部消除地基液化沉陷的措施; 當地基主要受力層范圍內存在軟弱粘性土層、新近填土和嚴重不均勻土層時,應估計地震時地基不均勻沉降或其他不利影響, 采用樁基、地基加固和加強基礎和上部結構的處理措施; 對于地震時可能導致滑移或地裂的場地,應采取相應的地基穩定措施。

(二)優化的平面和立面布置

關于建筑結構設計的平面與立體結構, 我們根據認為有以下幾個方面可以參考:

1、結構的簡單性。結構簡單是指結構在地震作用下具有直接和明確的傳力途徑。只有結構簡單,才能夠對結構的計算模型、內力與位移分析, 限制薄弱部位的出現易于把握,因而對結構抗震性能的估計也比較可靠。

2、結構的剛度和抗震能力。水平地震作用是雙向的,結構布置應使結構能抵抗任意方向的地震作用。通常, 可使結構沿平面上兩個主軸方向具有足夠的剛度和抗震能力, 結構的抗震能力則是結構強度及延性的綜合反映。結構剛度的選擇既要減少地震作用效應又要注意控制結構變形的增大, 過大的變形會產生重力二階效應, 導致結構破壞、失穩。論文參考網。

3、結構的整體性。在高層建筑結構中,樓蓋對于結構的整體性起到非常重要的作用,樓蓋相當于水平隔板,它不僅聚集和傳遞慣性力到各個豎向抗側力子結構, 而且要求這些子結構能協同承受地震作用, 特別是當豎向抗側力子結構布置不均勻或布置復雜或抗側力子結構水平變形特征不同時, 整個結構就要依靠樓蓋使抗側力子結構能協同工作。

(三)設置多道設防的抗震結構體系

多道抗震防線, 是指在一個抗震結構體系中, 一部分延性好的構件在地震作用下, 首先達到屈服, 充分發揮其吸收和耗散地震能量的作用, 即擔負起第一道抗震防線的作用, 其他構件則在第一道抗震防線屈服后才依次屈服,從而形成第二、第三或更多道抗震防線, 這樣的結構體系對保證結構的抗震安全性是非常有效的。同時底框建筑底層高度不宜太高, 應控制在4.5m 以下。高度加大, 底層剛度減小, 重心提高, 使框架柱的長細比增大, 更容易產生失穩現象。論文參考網。而且由于高度較大,很多建筑房間被業主一層改成了兩層, 造成了較大的安全隱患。科技論文。宜具有合理的剛度和強度分布, 避免因局部削弱或突變形成薄弱部位.產生過大的應力集中或塑性變形集中;可能出現的薄弱部位, 應采取措施提高抗震能力。

(四)保證結構的延性抗震能力

合理選擇了建筑結構后, 就需要通過抗震措施來保證結構確實具有所需的延性抗震能力,從而保證結構在中震、大震下實現抗震設防目標, 系統的抗震措施包括以下幾個方面內容。強柱弱梁: 人為增大柱相對于梁的抗彎能力,使鋼筋混凝土框架在大震下,梁端塑性鉸出現較早,在達到最大非線性位移時塑性轉動較大; 而柱端塑性鉸出現較晚, 在達到最大非線性位移時塑性轉動較小,甚至根本不出現塑性鉸。從而保證框架具有一個較為穩定的塑性耗能機構和較大的塑性耗能能力。強剪弱彎: 剪切破壞基本上沒有延性, 一旦某部位發生剪切破壞, 該部位就將徹底退出結構抗震能力, 對于柱端的剪切破壞還可能導致結構的局部或整體倒塌。因此可以人為增大柱端、梁端、節點的組合剪力值, 使結構能在大震下的交替非彈性變形中其任何構件都不會先發生剪切破壞。

(五)合理的建筑結構參數設計計算分析

對于復雜結構進行多遇地震作用下的內力和變形分析時, 應采用不少于兩個不同的力學模型,目前主要有兩種計算理論: 剪摩理論和主拉應力理論, 它們有各自的適用范圍:磚砌體一般采用主拉應力理論,而砌塊結構可采用剪摩理論。對計算機的計算結果, 應經分析判斷確認其合理、有效后方可用于工程設計。結構計算控制的主要計算結果有結構的自振周期、位移、平動及扭轉系數、層間剛度比、剪重比、有效質量系數等。另外, 地下室水平位移嵌固位置,轉換層剛度是否滿足要求等, 都要求有層剛度作為依據。復雜高層建筑抗震計算時,宜考慮平扭耦聯計算結構的扭轉效應, 振型數不應小于15,對多塔結構的振型數不應小手塔樓數的9 倍, 且計算振型數應使振型參與質量不小于總質量的90%。總之, 高層結構計算很難一次完成,應根據試算結果, 按上述要求多次調整,才能得到較為合理的計算結果,以保證建筑物的安全。

二、高層建筑抗震設計中經常出現的問題

(一)部分建筑物高度過高

按我國現行高層建筑混凝土結構技術規程規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。在這個高度,抗震能力還是比較穩妥的,但是目前不少高層建筑超過了高度限制。在震力作用下,超高限建筑物的變形破壞性會發生很大的變化,建筑物的抗震能力下降,很多影響因素也發生變化,結構設計和工程預算的相應參數需要重新選取。

(二)地基的選取不合理

由于城市人口的增多和相對空間的縮小,不少建筑商忽略了這一問題,哪里商業空間大就在哪里建。高層建筑應選擇位于開闊平坦地帶的堅硬土場地或密實均勻中硬土場地,遠離河岸,不應垮在兩類土壤上,避開不利地形、不采用震陷土作天然地基,避免在斷層、山崖、滑坡、地陷等抗震危險地段建造房屋。高層建筑的地基選取不恰當可能導致抗震能力差。

(三)材料的選用不科學,結構體系不合理

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。由于我國建筑結構主要以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,而且效果不大,有時不得不加大混凝土的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值。

(四)較低的抗震設防烈度

許多專家提出,現行的建筑結構設計安全度已不能適應國情的需要,建筑結構設計的安全度水平應該大幅度提高。我國現行抗震設防標準是比較低的,中震相當于在規定的設計基準期內超越概率為lO%的地震烈度,較低的抗震設防烈度放松了高層建筑的抗震要求。論文參考網。科技論文。

三、結語

地震是一種目前難以準確預測的自然災害,為避免它給人類帶來大的災難。作為工程技術設計人員在建筑結構的研究和工程設計中,應從整體宏觀的觀點出發,綜合處理好建筑功能、技術、藝術、安全可靠性和經濟合理等幾方面內容,從而創造出更加安全、適用、經濟美觀的高層建筑;新型結構的出現,高性能材料的發展,計算機技術水平的提高,促使人類建筑精品再上新的臺階。

篇3

論文摘要:《混凝土異型柱技術規程}(JGJ149—2006)的頒布為我國的結構設計人員提供了一本可以參照的國家標準,同時為廣大結構設計人員指明了異型柱結構與普通混凝土結構的區別,現將其與《建筑抗震設計規范》(GB 500l1-2001)的區別與廣大設計人員共同探討。

引言

新的《混凝土異型柱技術規程》(JGJl49—2006)(簡稱異型柱規程)于2006年8月頒布,改變了異型柱設計只有地方性規定而沒有國標的歷。隨之而來就是我們對規范的理解可能沒有比較深入的研究,另外《異型柱規程》有些規定比《建筑抗震設計規范》(GB50011-2~1)(簡稱抗震規范)嚴格。現就規范的幾點規定,談談個人的一點看法:

(1)異型柱結構最大適應高度

由于異型柱是一種新型的結構形式,只經過十余年的實踐。綜合考慮現有的理論研究、實驗研究成果及設計施工經驗,其房屋適用的最大高度較一般的鋼筋混凝土結構有所降低。現就《異型柱規程》與《抗震規范》對比見下表:

沈陽市抗震設防烈度為7度,設計基本加速度值為0.10g,超過40米的結構,建議采用短肢剪力墻結構。

(2)異型柱的抗震等級

由于異型柱結構的抗震性能相對于普通混凝土房屋較弱,異型柱結構的抗震等級相對于普通混凝土房屋也應較嚴格。由于異型柱結構的適用范圍較普通混凝土結構小,相應《異型柱規程》的抗震等級分類較《抗震規范》詳細。對于丙類建筑抗震設計的房屋,《異型柱規程》給出了抗震等級的確定方法,現就《異型柱規程》與《抗震規范》的異《抗震規范》現澆鋼筋混凝土房屋的抗震等級

《異型柱規程》中表3.3—1注3,當為7度(0.15g)時,建于Ⅲ、Ⅳ類聲地的異形柱框架結構和框架一剪力墻結構情形時,也按8度(O.20g)采取抗震構造措施,但于括號內所示的抗震等級形式來具體表達,需注意的是《異型柱規程》采取了“應”按表中括號所示的抗震等級采取抗震構造措施,比《抗震規范》的上述對應部分規定(“宜”按……)有所加嚴

(3)不規則異型柱結構的抗震設計應符合下列要求

1.當異型柱結構樓層豎向構件的最大水

平位移(或層間位移)與該樓層層兩端彈性水平位移(或層間位移)平均值之比大于1.20時,根據《抗震規范》有關規性,可界定為平面不規則的“扭轉不規則類型”,但《異型柱規程》規性此時控制該比值不應大于1.45(第3.2.5條第1款),較《抗震規范》相應規定“不大于1.5”有所加嚴,目的是為了為嚴格控制異型柱結構平面的不規則性,避免過大的扭轉

效應而導致嚴重的震害。

2.當異型柱結構的層間受剪承載力小于上一樓層的80%時,根據《抗震規范》有關規性,可界定為豎向不規則中的“樓層承載力突變類型”,并規定其薄弱層的受剪承載力不應小于上一層的65%,但《異型柱規程》規性此時乘以1.20的增大系數(第3.2.5條第2款),較《抗震規范》相應規定乘以增大系數1.15有所加嚴。

(4)異型柱的抗震作用計算規則

1.《抗震規范》第3.1.4條規定:“抗震設防為6度時,除本規范規定外,對乙、丙、丁類建筑可不進行地震作用計算”及第5.1.6條規定:“6度時的建筑(建造于Ⅳ類場地上較高的高層建筑除外),以及生土房屋及木結構房屋,應允許不進行截面抗震驗算。”但《異型柱規程》第4.2.3條則以強制性條文方式規定:“抗震設防為6度、7度(0.1Og、0.15g)及8度(0.20g)的異型柱結構應進行地震作用計算及結構抗震驗算。”本條是基于異型柱結構的抗震性能特點而制定的,6度設防時設計者應注意此條。

2.異型柱的雙向偏壓正截面承載力隨荷載(作用)方向不同而有較大的差異,在L形、T形和十字形三種異型柱中,以L形柱的差異最為顯著(設計者應著重加強L形柱的構造)。如根據《抗震規范》5.1.1條第一款(一般情況下(所有烈度),應允許在建筑結構的兩個主軸方向分別計算地震作用并進行抗震驗算,各方向的水平地震作用應由該方向抗側力構件承擔),則可能在某些情況下造成結構的不安全性,所以《異型柱規程》4.2.4條第一款規定, 7度(0.15g)及8度(0.20g)時尚應對與主軸成45°方向進行補充計算。

(5)異型柱的抗震變形驗算

由于異型柱結構的特殊性,《異型柱規程》對異型柱結構的彈性層間位移角限值也較《抗震規范》嚴格,現比較如下:

考慮到異型柱結構的特殊性,本人建議進行異型柱設計時彈性層間位移角應從嚴控制:框架結構【】應小于l,800,框架一剪力墻結構【]應小于1/I100。

(6)異型柱框架梁柱節點核心區受剪承載力驗算。

篇4

關鍵詞: 建筑;結構設計;抗震;設計;策略

中圖分類號:TU318文獻標識碼: A 文章編號:

近幾年來,全球性的地震災害的頻發,給我們的人類,帶來了更加深重的災難。從汶川地震、舟曲地震,在到雅安地震,這些災難,帶給了我們無盡的傷痛,房毀人亡,建筑損壞等的發生,使得人們更加注重起了災后依然屹立不倒的建筑,這些建筑,在災難來臨時,無疑可以為人們提供一個避風港,在一定程度上減少了人員的傷亡。為了提高建筑的抗震性能,本文對建筑結構設計中的抗震問題,進行了分析。

一、建筑抗震結構設計的基本原則

一是在最大限度上安排多道抗震防線。由于多個延性相對較好的分體系會構成一個抗震結構體系,通過有一定延性的結構構件共同協作。比合如延性框架以及剪力墻構成了框架-剪力墻結構。在經過了級數較大的地震之后,往往隨之而來是多次的余震。如果只設計了一道防線,則余震帶來的破壞在很大程度上會給已經受過損傷的建筑物帶來致命的一擊,而造成倒塌。為了防止大地震時發生倒塌,需要在抗震結構體系中設計較大的內部、外部冗余度。所運用的耗能構件需要滿足較好的延性和適當的剛度,這樣才能在很大程度上提高結構的抗震性能。

二是采取相應的措施在可能出現的薄弱部位加強其抗震能力。

判斷薄弱部位的基本因素是構件的實際承載能力,發生強烈地震的過程中,構件沒有所謂的強度安全儲備。在設計過程中,需要實現樓層(部位)的實際承載能力和設計計算的彈性受力的比值處于相對均勻的變化趨勢。且不能過分重視局部的剛度和承載力而忽視了整體的協調程度。對于從總體上加強抗震性能的手段,效果較為顯著的手段是重視薄弱層的設計,能夠具備充足的變形能力而不會發生薄弱層轉移的情況。

二、建筑結構設計的抗震設計策略

1、建筑抗震場地的選擇

(1)房屋平面布置應當規則,在結構上應當力求對稱。如果房屋在建筑過程中,其外形不規則,或者是不對稱,帶有凹凸變化尺度,或者是形心質心偏大,在同一個結構的單元內部,結構的平面形狀以及剛度不均勻或是不對稱的情況下,平面的長度過長等現象,對于抗震性能均不利。

(2)強度以及剛度都要勻稱。在多層的建筑結構當中,應該使各個層面之間的強度和具備的剛度都要勻稱,無論哪一層,如果存在薄弱的一個樓層,那么這一處,就會在地震力的強大作用下導致變形或成為變形集中區,從而使得建筑物最初開始從此部位發生嚴重的變形導致破壞,最后甚至波及到整個建筑的整體遭到嚴重破壞。

(3)結構的超靜定次數多。靜定結構的桿件,其受力系統和傳力路線單一,其中一根桿件遭到破壞,就會波及整個結構體系由此而導致失效。在超靜定的結構中,超過其荷載能力的時候,會先使一些多余的桿件發生一些塑性的變形,并且容易消耗吸收一部分的能量,而保證整個的結構所具備的穩定性,并且還可以減少地震的破壞。超靜定結構次數多,那么消耗地震能量,也就越多,同時建筑的抗震能量也就越強。

2、建筑結構抗震體系的合理選擇

建筑結構中的抗震體系的合理選擇,是在建筑結構抗震結構的設計當中,應當慎重考慮的一個重要性的問題,其中建筑結構的抗震方案的選取是否合理,這是決定建筑結構的安全性以及經濟性的一個重要的組成部分。

(1)首先建筑結構體系,在地震的災害中,應當避免因為部分結構或者是構件的破壞,從而導致的整個建筑結構喪失了抗震能力,或者是對重力荷載的承載能力。建筑結構抗震設計所具備的一個重要的設計原則就是,建筑結構本身應當具有十分必要的贅余度、以及良好的變形能力,和其具備的內力重分配的功能,在地震的過程當中,即使是有一部分的構件退出了工作,但是其余部分構件,應該仍然能夠承擔起豎向的荷載能力,且還要避免整體的建筑結構失穩。

(2)建筑結構體系當中,其應當具備清晰而且明確的計算的簡圖,包括恰當而且合理的地震作用下的傳遞的路徑。在抗震設計過程當中,豎向建筑構件的布置設計,就應當盡量使得豎向建筑構件,在垂直的重力荷載的作用下,壓應力水平應當接近均勻;且其中的樓屋蓋梁體系的布置,也應當盡量的使用垂直重力荷載,主要目的是以最短的路徑來傳遞到豎向構件墻和柱的上面去;

(3)建筑結構體系應當具有合理適度的強度和剛度。應當具有合理而且恰當的強度以及剛度分布,這是因為在抗震過程中,為了防止以及避免因為局部的削弱或者是突然的變形而形成薄弱的部位,并且對薄弱的部位產生過大的塑性變形集中或者是應力集中的現象;建筑的框架結構設計,應當使節點基本不遭到破壞,同時底層柱底的塑性鉸應當形成的晚些,應當使柱、梁端的塑性鉸出現得盡可能地分散;這對于震中可能出現的薄弱部位,應當及時采取適當的措施來提高抗震的能力。

3、重視建筑結構平面布置的規則性和對稱性

建筑的平、立面布置應符合抗震理念設計原則,宜采用規則的建筑結構設計方案,不應采用十分不規則的設計方案。建筑結構抗震設計規范規定,對平面不規則或豎向不規則,或平面、豎向都不規則的建筑結構,應采用空間結構計算模型;對凹凸不規則或樓板局部不連貫時,應采用符合樓板平面內的實際剛度強度變化的計算模型;對薄弱部位應乘以內力增大系數,應按規范的有關規定分析彈塑性變形,并應對薄弱部位采取強有效的抗震構造措施。

4、提高建筑結構抗震能力的對策

(1)要合理且恰當地布局地震外力的能量傳遞與吸收的途徑,在地震當中,要確保建筑的支柱、梁與墻的軸線,處于同一個平面上,從而可以形成構件的雙向抗側力結構體系。并且可以使其在地震的作用下,呈現彎剪性的破壞,并使塑性屈服情況,盡量的發生在墻的根底部,從而連梁適合在梁端產生塑性屈服,這樣還具有足夠的變形的能力。在震災中,在墻段部分充分發揮抗震功能之前,要按照"強墻弱梁"的原則,來大力加強墻肢的承載力,避免墻肢遭到剪切性的破壞現象,從而最大限度的提高建筑結構的整體的抗震能力。

(2)要根據抗震等級,在對墻、柱以及梁節點設計中,采取相對應的抗震構造措施,力求確保建筑物結構,在地震的作用下可以達到三個水準的設防標準。還可以根據"強柱弱梁"、和"強剪弱彎" 、以及"強節點弱構件"幾種構造的原則,在建筑設計中,合理的選擇柱截面的尺寸,以此控制柱的軸壓比,并還要注意構造配筋的要求,還要保證,鋼筋砼結構建筑在地震的作用下,能夠具有足夠的承載能力以及具備足夠的延性。

(3)在建筑設計過程中,要設置出多道抗震的防線,即,在設計一個抗震結構的體系當中,有一部分延性比較好的構件,在地震的作用下,首先可以擔負起第一道抗震防線的作用,然事,其他的構件,在第一道抗震防線屈服以后,在地震中,會依次的形成第二道、第三道或者是更多道的抗震的防線,這樣的抗震結構體系的設計,在建筑設計當中,對于確保建筑結構具有的抗震安全性,是非常的行之有效的設計方法和手段。

總之,建筑行業關系到我國的經濟發展和社會穩定,關系到國民的生命財產安全,加強對建筑結構的防震設計,提高抗震能力,是促進社會和諧穩定的客觀要求。因此實施科學合理的設計方法,選擇科學的抗震措施,重視抗震關鍵要點,具有重大的社會意義。

參考文獻:

[1] 瞿岳前 楊將 湯衛華 建筑結構基于性能的抗震設計理論與方法 [期刊論文] 《山西建筑》 -2009年35期

篇5

【關鍵詞】房建結構,結構設計,抗震設計現狀,要求

中圖分類號:S611 文獻標識碼:A 文章編號:

一、前言

房建結構抗震設計,關乎民生,關乎經濟發展,社會穩定,對房屋建筑實施結構設計,主要涉及對建筑高度,承載力,總體結構,各個部件的性能規劃等一系列的因素,要求通過對各個構件和整體規劃的基礎上,既實現滿足居民生活生產保障安全的需要,又具有值得欣賞的美學價值。增強房建結構的抗震設計,必須綜合考慮地基,房屋的結構體系選擇,綜合布局等多方面建設因素,是一項及其專業,嚴謹,復雜的高技術工作。

二、建筑抗震的主要影響因素

1、抗震設計標準

目前,國內在不同地區設定的基本設防烈度,主要是根據該地區以及具體建筑在一段時間內遭受地震以及地震強度的概率而定的。如果是一般建筑,則執行基本烈度設防,如果是重要的建筑物,則相應地提高設防烈度,但是,隨著設防烈度的提高,建筑的造價會相應增加。

2、建筑結構形式

為了有效地保證建筑物“小震不壞,中震可修,大震不倒”,在最新的設計規范中,磚混內框架結構被嚴格取締了。目前,主要采用的是框架結構、剪力墻結構等。框架結構空間布置靈活,相對造價低,但是其在水平地震力作用下,容易發生剪切變形,因此,框架結構適用的高度相對較低。剪力墻結構平面布置沒有框架靈活,但其平面內自身剛度大,強度高,整體性能好,在水平荷載作用下變形小,抗震性能較強,適用于高度較高的高層建筑。

3、抗震措施

抗震措施主要是根據建筑的重要性決定的。在確定建筑等級及場地類型之后,將先進的抗震理念和系統的分析計算納入到抗震設計中,即可改善建筑抗震性能,提高建筑抗震效果。

三、框架結構抗震設計的基本要求

有抗震性要求的框架結構,應設計成延性框架,遵守“強柱弱梁” 、“強剪弱彎”、強節點、強構件等設計原則,柱截面不宜過小,應滿足結構側移變形及軸壓比的要求。在進行框架結構抗震設計的時候,需要確定框架結構的抗震等級,根據不同的等級進行設計,主要是為保證框架結構具有較好的延性,并且能滿足合理、經濟的設計要求。構件設計時應滿足各自的基本要求:①框架結構在進行梁端抗震設計時,既要允許塑性鉸在梁上出現又不要發生梁剪切破壞,同時還要防止由于梁筋屈服滲入節點而影響節點核心區的性能,使梁形成塑性鉸后仍有足夠的受剪承載力,梁筋屈服后,塑性鉸區段應有較好的延性和耗能能力。②框架柱在設計時,應該遵循強柱弱梁,使柱盡量不要出現塑性鉸,在彎曲破壞之前不發生剪切破壞,使柱有足夠的抗剪能力,同時控制柱的剪切比不要太大。③框架節點在地震破壞時,主要是節點核心區剪切破壞和鋼筋錨固破壞,因此在設計時,要采取“強節點弱構件”的設計概念,保證在多遇地震時,節點應在彈性范圍內工作;在罕遇地震時,節點承載力的降低不得危及豎向荷載的傳遞。

四、框架結構構件抗震設計的構造措施

1、框架梁的截面抗震設計尺寸,宜符合下列各項要求:截面寬度不宜小于 200mm;截面高寬比不宜大于 4;凈跨與截面高度之比不宜小于4。在計算出梁控制截面處考慮地震作用的組合彎矩后,可按一般鋼筋混土受彎構件進行正截面受彎承載力計算。梁端縱向受拉鋼筋的配筋率不應大于 2.5%,且計入受壓鋼筋的梁端混凝土受壓區高度和有效高度之比,一級不應大于 0.25,二、三級不應大于 0.35。梁端截面的底面和頂面縱向鋼筋配筋量的比值,除按計算確定外,一級不應小于 0.5,二、三級不應小于 0.3。梁端剪力設計值應根據強剪弱彎的原則,按的要求加以調整,對一、二、三級抗震等級分別采取1.3、1.2、和1.1梁端剪力增大系數。

2、框架柱的截面抗震設計尺寸,宜符合下列各項要求:截面的寬度和高度均不宜小于 300mm;圓柱直徑不宜小于 350mm。剪跨比宜大于 2。截面長邊與短邊的邊長比不宜大于3。柱軸壓比不宜超過下表的規定;建造于Ⅳ類場地且較高的高層建筑,柱軸壓比限值應適當減小。柱的鋼筋配置,應符合柱縱向鋼筋的最小總配筋率,中柱和邊柱的一、二、三、四抗震等級分別是1.0、0.8、0.7、0.6,角柱、框支柱的一、二、三、四抗震等級分別是1.2、1.0、0.9、0.8。同時每一側配筋率不應小 0.2%;對建造于Ⅳ類場地且較高的高層建筑,數值應增加 0.1。 當采用HRB400 級熱軋鋼筋時應允許減少 0.1,混凝土強度等級高于 C60 應增加 0.1。

3、框架節點核芯區箍筋的最大間距和最小直徑宜按規范中的柱箍筋加密區的箍筋最大間距和最小直徑,一、二、三級框架節點核芯區配箍特征值分別不宜小于 0.12、0.10 和 0.08 且體積配箍率分別不宜小于 0.6%、0.5% 和 0.4%。柱剪跨比不大于 2 的框架節點核芯區配箍特征值不宜小于核芯區上、下柱端的較大配箍特征值。

五、基于剪力墻結構建筑體形的抗震優化設計

高層建筑結構的設計,除了要合理選擇結構抗側力體系外,要特別重視建筑體形和結構總體布置。建筑體形是指建筑的平面和立面;結構總體布置是指結構構件的平面布置和豎向布置。建筑體形和結構總體布置對結構的抗震性能具有決定性的作用。

1、震害及抗震概念設計

結構抗震設計有許多不確定因素(地震特性、結構扭轉等),進行精確的抗震計算是非常困難的。結構的抗震設計除了進行細致的計算外,要特別注重結構概念設計。概念設計是指在結構設計中,結構工程師運用“概念”進行分析,做出判斷,并采取相應措施。根據概念設計,抗震房屋的建筑體形和結構總體布置應符合如下原則:采用規則結構,不采用嚴重不規則結構;明確的計算簡圖和合理的傳力路徑;具有必要的剛度和承載力,具備良好的彈塑性變形能力和消耗地震能量的能力;部分結構或構件破壞不應導致整體結構倒塌,增加超靜定結構的次數。滿足抗震設計原則:即:“強節弱桿”、“強豎弱平”、“強剪弱彎”;置多道抗震防線,形成兩道或多道的抗震防線,增強結構抗倒塌能力。

2、建筑平面和結構平面布置

高層建筑的外形分為板式和塔式兩大類:板式建筑平面兩個方向的尺寸相差較大,塔式建筑平面兩個方向的尺寸接近。多數高層建筑為塔式。對抗風有利的建筑平面形狀是簡單規則的凸平面,如圓形,正多邊形、橢圓形等平面,以減小風壓,有較多凹凸的復雜平面,對抗風不利,如V形、Y形等。對抗震有利的建筑平面形狀是簡單、規則、對稱、長寬比不大的平面。

六、結束語

綜上所述,建筑結構設計中的抗震設計十分重要,加上我國今年來地震較多,加強房屋抗震設計對于居民的安全具有很大作用,應該不斷的加強研究。

參考文獻:

[1] 張立軍 房屋建筑結構設計體系選型及抗震沒計 [期刊論文] 《科技與生活》 -2011年14期

[2]孟虎 房建工程磚混結構的抗震設計與前瞻性研究 [期刊論文] 《科技與企業》 -2011年9期

[3]萬忠倫 成都驛園高層住宅結構抗震設計 [期刊論文] 《鐵道建筑》 PKU -2008年12期

[4]呂西林.周德源、李思明、陳以一、陸浩亮.抗震設計理論與實例[M].同濟大學出版社.2011

篇6

關鍵詞:型鋼混凝土結構;抗震性能水平;容許變形值;量化指標

abstract

combining with performance grades of reinforced concrete structures at home and abroad, the seismic

performance of steel reinforced concrete (src) structures can be induced into four levels: normal service, temporary service, life safety and collapse prevention. the failure modes and characteristics of src columns are introduced, and limit states of the four seismic performance levels and their dominating parameters are put forward. on the basis of the experiments and results of src frames and columns, the story drifts angle limitation and range of crack width on the column end are obtained for four different seismic performance levels. finally considering ideas of performance based seismic design, problems needed much further study about src structures are proposed.

keywords: steel reinforced concrete (src) structures, seismic performance levels, tolerantdeformation values, quantitative index

1. 引 言

型鋼混凝土結構(src 結構)又叫勁性鋼筋混凝土結構或鋼骨混凝土結構,是鋼-混凝 土組合結構的一種形式。src 結構通過把鋼和混凝土巧妙地組合在一起,充分發揮了這兩 種材料的特性,其具有比傳統結構承載力高、強度剛度大、穩定性和抗震性能好等優點。隨 著超高層建筑的發展和理論研究的深入,src 結構在我國將具有非常廣闊的應用前景。目 前國內外對 src 結構的研究工作和成果主要集中在構件的承載能力,即針對強度計算開展 研究[1]。隨著基于性能抗震設計理論的提出和發展,人們意識到這種傳統基于力的設計方 法還存在缺陷,開展基于性能的 src 結構抗震設計理論則更加科學合理,既符合當代抗震 設計理念的發展趨勢,又為工程實踐應用和推廣型鋼混凝土結構提供基礎。

確定 src 結構在不同性能水平下的容許變形值是實現其基于性能抗震設計理論的前提 和關鍵。由于結構的性能與破壞狀態有關,而結構的破壞狀態又可由結構的反應參數或者某 些定義的破壞指標來確定,所以,結構性能水平可以用這些主要的參數來劃分。容許變形值 被認為是比較重要的反應參數,但對此方面的研究還比較欠缺,本文即在此背景下研究 src 結構功能失效的判別參數和容許變形值的大小。

2. src 結構的性能水平和抗震設防目標

2.1 性能水平劃分

結構的抗震性能水平是指建筑物在某一特定設防地震水準下預期達到的最大破壞程度, 或容許的損壞極限狀態。目前對鋼筋混凝土結構性能水平的劃分比較明確,比如我國現行抗 震規范[2]將其分為三檔,美國 vision2000、fema273 和 atc-40 分為四檔,當然還有學者 提出其他不同的劃分標準。

性能水平為基于性能的抗震設計和震后修復加固提供依據,對于 src 結構,結合已有 的劃分方法和試驗理論研究成果[2],將其性能水平分為四檔,見表 1 所示。

表 1 src 結構四個性能水平及其宏觀描述

tab.1 target performance levels and damage control of src structures

 

2.2 抗震性能目標確定

結構的性能目標是指一定超越概率的地震發生時,結構期望達到的某種功能水平。我國 現行抗震規范采用小震不壞、中震可修、大震不倒的三水準設防目標,但在表 1 提出的 src 結構性能水平背景下,已有的三水準抗震設防目標需要更加細化。按照小中大三個地震作用 水平和“四檔”性能水平,可對 src 結構建立表 2 所示的抗震性能目標。

表 2 src 結構抗震性能目標

tab.2 seismic performance objectives

 

(其中:①為基本目標,指一般使用要求的建筑應具備的最基本性能目標;②為重要目標,指重要性很高

或地震后危險性較大的性能目標;③為非常重要目標,指對安全有十分危險影響的性能目標)

可以看出,排除掉不符合實際工程的情況,這里對 src 結構建立了 10 個抗震性能目標,

其比鋼筋混凝土結構的三水準設防目標有所提高,且“中震可修”的性能目標變得更加具體 化。以上三個地震作用水平、四檔結構性能水平和 10 個抗震設防目標的提出為實現 src 結 構基于性能的抗震設計理論奠定了基礎。

3. src 框架柱的破壞模式及描述

src 構件是在混凝土中主要配置型鋼,同時配有受力和構造鋼筋。型鋼分為實腹式和 空腹式,實腹式型鋼主要有 i 字鋼、h 形鋼和 l 形鋼等。理論和實踐均證明,實腹式 src 構件具有較好的抗震性能,而空腹式 src 構件的抗震性能與普通 rc 構件的抗震性能基本 相同。因此,這里主要研究含鋼率為 4%~8%的實腹式 src 構件。

3.1 破壞模式和特點

src 柱在水平荷載作用下主要產生三種破壞模式,破壞形態按剪跨比的不同大致分為 三種。當剪跨比小于 1.5 時,src 柱發生剪切斜壓破壞,首先剪跨段產生許多大致平行的斜 裂縫,將混凝土分成斜向受壓短柱,鋼骨腹板此時基本處于純剪應力狀態,最后鋼骨腹板在

近似純剪應力狀態下達到屈服強度,剪壓區混凝土壓碎而破壞;當剪跨比為 1.5~2.5 時,src

柱在反復荷載作用下發生剪切粘結破壞,首先在最大彎矩處出現剪切斜裂縫或豎向粘結裂 縫,隨著荷載的增加與往復循環,粘結裂縫擴展成兩條沿型鋼翼緣的豎向粘結主裂縫,最后 裂縫處混凝土保護層剝落,剪切承載力下降,構件破壞;當剪跨比大于 2.5 時,src 柱的承 載力往往由彎曲應力起作用,一般發生彎曲破壞,其首先在最大彎矩截面處形成水平裂縫, 隨著荷載增加,柱底縱筋屈服,緊接著型鋼翼緣屈服,隨之腹板屈服,外圍混凝土不斷剝落, 縱筋和型鋼翼緣壓屈,最后 src 柱達到最大承載力而破壞。

3.2 與 rc 柱破壞的主要區別

試驗研究表明,src 柱比 rc 柱具有更優越的抗震性能,其優越性主要在于型鋼的影響。 型鋼的存在使構件的變形能力增強,破壞時吸收的能量增大,延性也相應得到提高。rc 柱 的最終破壞是由于壓區混凝土的壓酥,src 柱由于設置較強勁的鋼骨,壓區混凝土逐漸壓 酥后,rc 部分的承載力將向鋼骨轉移,其后期仍有相當大的變形能力來延緩破壞。可見, 無論在承載能力和剛度方面,還是在延性和耗能能力方面,src 構件均體現了良好的抗震 性能,其在不同性能水平下的變形容許值也將大于傳統 rc 結構,這方面的研究工作值得深 入開展。

4. src 結構功能失效的判別標準和容許變形值大小

4.1 四個性能水平及其極限狀態

目前關于結構性能水平的劃分方法很多,美國 vision2000、fema273 和 atc-40 均將 其劃分為四種性能水平,日本和墨西哥則采取三重性能水準,參照已有的劃分標準和我國新 的“建筑工程抗震性態設計通則(試用本)”,本文按照我國抗震設計的需要和建筑損傷加重 的程度,對 src 結構采用正常使用、暫時使用、生命安全和接近倒塌四個性能水平。

傳統基于力的抗震設計理論將 rc 結構的極限狀態分為承載能力極限狀態和正常使用 極限狀態,基于性能的抗震設計考慮到“投資-效益”因素,從結構受力和業主損失兩方面出 發,對應于所提的四個性能水平,將 src 結構的破壞極限狀態分為正常使用極限狀態、暫 時使用極限狀態、生命安全極限狀態和接近倒塌極限狀態。

4.2 不同性能水平的失效判別標準和參數

為了確定 src 框架柱在四個性能水平下的容許變形值,首先應該能夠對各種性能水平 的損壞極限狀態進行描述,相應的就必須建立 src 柱不同性能水平的失效判別標準和參數。 傳統的 rc 結構采用層間位移角這種單一指標作為量化參數,對于 src 結構,可以利用層 間位移角、裂縫寬度、塑形耗能、塑形轉角和延性系數等加以描述和量化。

src 壓彎構件經歷了混凝土開裂、裂縫延伸擴展,直到壓區混凝土剝落,受壓縱筋和 型鋼受壓翼緣屈服,承載力達到峰值的一系列過程,構件最終以受壓區混凝土破碎作為喪失 承載力的標志。為了與上述四檔性能水平相對應,可將其整個受力過程劃分為彈性階段、帶 裂縫工作階段、彈塑性工作階段和破壞階段。

在前述 src 柱破壞形態與剪跨比的定量關系基礎上,可以建立 src 柱三種破壞模式各 自的失效判別標準。經過分析,發現得出的三種失效判別標準之間有很多共同點,因此可將 其歸納為統一的判別標準以便應用。對于 src 柱,從開始加載到沿柱身出現剪切斜裂縫或 彎曲裂縫為正常使用性能階段,此為彈性工作階段,以開始出現斜裂縫或彎曲裂縫為正常使

用性能極限狀態;從混凝土開始出現裂縫到受拉鋼筋或型鋼受拉翼緣屈服為暫時使用性能階

段,此階段是帶裂縫工作階段,以受拉縱筋或型鋼翼緣屈服為暫時使用性能極限狀態;從型 鋼開始出現屈服到外圍混凝土剝落,縱筋壓屈且水平荷載達到最大值為生命安全性能階段, 此為彈塑性工作階段,以水平荷載達最大值為生命安全性能極限狀態;從 src 柱承載力達 最大值到混凝土保護層嚴重剝落,直至核芯混凝土發生局部破碎且承載力嚴重下降為接近倒 塌性能階段,此階段為塑形階段,以核芯混凝土發生局部破碎為接近倒塌性能極限狀態。

4.3 不同性能水平的容許變形值

結合上述判別標準,可分別以層間位移角、裂縫寬度、塑形耗能和延性系數等作為 src 結構四個性能水平極限狀態的判別參數。考慮到其中一些指標計算的難度,并為了與我國抗 震規范的性能指標相一致,這里以層間位移角和框架柱的裂縫寬度作為各種性能水平極限狀 態的判別指標。

為了得到各種性能水平的層間位移角范圍,本文對國內外 src 試驗柱、src 平面框架 試驗共約 90 個數據進行了統計分析,試驗框架柱大部分為實腹式 src 構件,軸壓比范圍為

0.3~0.8,體積配箍率為 0.8%~2.2%。通過分析文獻[4]-[20]中試驗柱和平面框架的變形性能, 以及對各個性能水平極限狀態的層間位移角統計結果來看,所有試件在未開裂彈性階段的層 間位移角分布范圍為 1/400~1/185,其中 1/400 對應的 src 柱僅有不到 4%的配鋼率且軸壓 比較高,大部分試件的彈性位移角集中在 1/350~1/200 范圍內;僅有少數試件測到 src 柱 受拉鋼筋或型鋼屈服時的層間位移角,分布范圍為 1/120~1/100,有的學者統計為 1/133~

1/100,但大部分集中在 1/120 左右;所有試件均得到了 src 構件在接近倒塌極限狀態的層 間位移角,其分布范圍為 1/53~1/11。

表 3 src 結構各性能水平的層間位移角分布范圍及分布比

tab. 3 distribution range and proportion of inter-storey drift

正常使用階段

 

從上表各性能階段的層間位移角分布情況來看,src律性較好。按照各個性能水平層間位移角的分布比例,在達到一定安全保證率的情況下,將

src 框架結構正常使用、暫時使用和接近倒塌三個性能水平極限狀態的層間位移角限值定

為 1/350、1/120 和 1/35;同時,將生命安全狀態的層間位移角限值設在 1/120 和 1/30 之間, 取為 1/75。

另外,框架柱的裂縫寬度也易于作為各種性能水平極限狀態的判別指標。文獻[4]-[20]

所做的 src 框架柱抗震性能試驗中,在對層間和柱端位移角測量的同時,考察到的柱端裂

縫寬度 在正 常使用 、暫 時使用 、生 命安全 和接 近倒塌 四個 性能水 平的 分布范 圍為

0.05~0.1mm、0.5~1mm、1~2mm 和大于 2mm。

綜上所述,本文提出的 src 框架結構在不同性能水平時的層間位移角限值和柱端裂縫 寬度可總結為表 4。

表 4 src 框架結構性能水平量化指標限值

tab. 4 limit value of quantitative index for src structures

 

5. 結論及建議

1) 提出基于性能的 src 結構抗震設計理論這一新課題,結合國內外對鋼筋混凝土結構 性能水平的劃分標準,將 src 結構的性能水平劃分為正常使用、暫時使用、生命安全和接 近倒塌四個等級,在此基礎上建立了 src 結構的 10 個抗震設防目標;

2) 總結了 src 柱在不同剪跨比時的破壞形態,提出了四個性能水平的失效判別標準和 參數,建議各自的層間位移角限值分別取 1/350、1/120、1/75 和 1/35,并將對應的柱端裂縫 寬度范圍定為 0.05~0.1mm、0.5~1mm、1~2mm 和>2mm;

3) 本文所提四個性能水平的容許變形值僅建立在少量試驗基礎上,還需要將試驗量測 結果和大量數值模擬結合起來,從理論上建立容許變形值的計算公式;同時,已有的 src 結構試驗研究主要針對框架結構,目前迫切需要開展型鋼混凝土組合件和型鋼混凝土剪力墻 的試驗研究,以便為全面實現 src 結構性態抗震設計提供依據。

參考文獻

[0]

[1] jgj138—2001/j130-2001. 型鋼混凝土組合結構技術規程[s]. 北京:中國建筑工業出版社,2001.

[2] gb50011-2001.抗震結構設計規范[s]. 北京:中國建筑工業出版社,2002.

[3] 李俊華, 王新堂等. 低周反復荷載下型鋼高強混凝土柱受力性能試驗研究[j]. 土木工程學報.2007,

40(7):11~18.

[4] 賈金青,姜睿,厚童.鋼骨超高強混凝土框架柱抗震性能的試驗研究[j].土木工程學報,2006,39(8):14~18.

[5] 聞洋.鋼骨高強混凝土柱受力性能的試驗研究[j].混凝土,2006,(9):25~26.

[6] 薛偉辰,胡翔.鋼骨混凝土框架滯回分析研究[j].地震工程與工程振動,2005,25(6): 76~80.

[7] 李斌,聞洋,李云云.鋼骨高強混凝土柱受力性能的試驗研究[j].包頭鋼鐵學院學報,2006,25(2):197~199.

[8] 蔣東紅 , 王連廣 , 劉之 洋 . 鋼 骨高強 混凝土框 架 柱開裂荷 載 的試驗研 究 [j]. 四川建筑 科 學 研 究,2002,28(3):7~9.

[9] 曹萬林等.異性截面鋼骨混凝土柱抗震性能試驗研究[j].世界地震工程,2004,20(2):64~68.

[10] 白國良,石啟印.空腹式型鋼混凝土框架柱的恢復力性能[j].西安建筑科技大學學報,1999,31(1):32~34.

[11]黃亮.深圳時代財富大廈超高層建筑結構若干問題研究[j].工程抗震與加固改造,2006,28(3):60~64.

[12] 薛建陽,趙鴻鐵.型鋼混凝土框架模型的彈塑性地震反應分析[j].建筑結構學報,2000,21(4):28~33.

[13] 徐培福等.帶轉換層型鋼混凝土框架—核心筒結構模型擬靜力試驗對抗震設計的啟示[j].土木工程學 報,2005,38(9):1~8.

[14] 楊勇, 郭子雄, 聶建國. 型鋼混凝土豎向混合結構過渡層抗震性能研究綜述[j]. 工程抗震與加固改 造,2006,28(5):78~86.

[15] 李丕寧, 秦榮.基于性能的高層鋼—混凝土混合結構住宅設計 [j].工程力學, 2007, 24(sup1):87~93.

[16] 田玉基等.鋼骨混凝土梁式托柱轉換層結構的研究[j].工業建筑,2000,30(2):54~57.

[17] 劉陽.核心型鋼混凝土柱抗震性能實驗研究[碩士論文].華僑大學碩士學位論文,2006.

[18] 莊云.src 柱—rc 梁組合件抗震性能試驗研究[碩士論文]. 華僑大學碩士學位論文,2006.

[19] 王妙芳 , 郭子 雄 . 型鋼混凝土柱抗震性態水平及極限狀態的討論 [j]. 工程抗震與加固改造 .2006,

28(3):31~36.

[20] mizuo inukai, kazuya noguchi, masaomi teshigawara, and hiroto kato. seismic performance composite columns using core steel under varying axial load [j]. 13th

world conference on earthquake engineering, 2004:598~606.

篇7

關鍵詞:超高層結構,抗震性能,施工技術

 

0.前言

鋼結構建筑具有強度高、自重輕、施工速度快、抗震性能好、節能環保及工業化程度高等特點,是我國十五期間重點推廣項目之一。隨著城市建筑業的迅速發展,高層鋼結構工程應用越來越多,合理確定鋼結構安裝的施工順序、采取各種措施提高安裝質量是保證整個工程質量和工期的關鍵。論文參考網。一旦鋼結構在施工過程中出現了問題,就會帶來許多后患。輕者會影響工期,破壞結構外觀,浪費材料等;重者則可能會造成人員的傷亡,甚至給社會帶來嚴重的不良影響。因此,對于鋼結構工程的施工必須嚴格控制,防患于未然。

1.鋼結構施工中存在的問題

鋼結構工程施工中產生的問題,是由于施工單位施工不善而造成的。論文參考網。主要問題有以下幾點:

(1)不熟悉圖紙,盲目施工,圖紙未經會審,倉促施工;未經設計部門同意擅自修改圖紙。

(2)未按相關施工驗收規范施工。

(3)未按相關操作規程施工。

(4)施工方案不周全,質量管理紊亂。

2.兩種鋼結構的施工技術

2.1 鋼結構廠房的施工技術

鋼結構構件主要制作工藝流程為:放樣→F料→電腦編程→拼板一CNC切割→組立→埋弧焊接→鉆孔→組裝→矯正成型→鉚工零配件下料→制作組裝→焊接和焊接檢驗→防銹處理、涂裝、編號→構件驗收出廠。鋼材不易久放露天,造成母材銹蝕過度而不合格;焊接材料受潮后不能施焊等;構件嚴格按照操作流程制作。

鋼結構廠房施工技術:綜合考慮工程特點、現場的實際情況、工期等因素,選擇合適的吊裝設備、安裝設備等。

(1)地腳螺栓的安裝:地腳螺栓的精度關系到鋼結構定位,地腳螺栓的埋設須嚴格保證其精度,地腳螺栓的埋設精度:軸線位移±2.0mm,標高±5.0mm。

(2)鋼架安裝順序:鋼柱→鋼梁→吊車梁→連系梁→水平支撐→檁條→拉桿→隅撐。

(3)鋼柱吊裝:鋼柱安裝前應測出鋼柱牛腿面的標高,以此標高反算到柱腳及基礎支承面標高,并予以調整支承面。

(4)鋼梁的安裝:首先在地面胎架上拼接成整體,同時在鋼梁上架設好生命線,安裝檁條時可以在鋼梁上來回走動,吊裝就位后在鋼梁的兩側用纜風繩將鋼梁固定,保證鋼梁的平面外的穩定,然后吊裝下一跨間鋼梁,待下一跨間鋼梁安裝完成后,在此跨間安裝檁條,固定鋼梁,保證鋼梁不會傾斜扭曲。

2.2 高層建筑鋼結構的施工技術

我國的高層與超高層鋼結構建筑自改革開放以來已有20年的歷史,并在設計和施工中積累了不少經驗,我國已自行編制了《高層民用建筑鋼結構技術規程》。針對高層建筑鋼結構安裝構件數量多和施工技術復雜的特點,對關鍵工序進行了研究,通過編制各種專項施工技術方案及質量控制措施,實現高精度安裝、快速完成工期的目標。

高層建筑鋼結構的施工技術具體有:

(1)地腳螺栓預埋:地腳螺栓預埋位置的準確程度對鋼結構工程整體的安裝質量至關重要,為保證地腳螺栓的定位準確,采用適宜厚度的鋼板制作加工成定位鋼板,進行地腳螺栓的定位固定。

(2)鋼柱的安裝:鋼柱標高的控制一般有兩種方式:一是,按相對標高制作安裝鋼柱的長度誤差不得超過3mm,不考慮焊縫收縮變形和豎向荷載引起的壓縮變形,建筑物的總高度只要達到各節柱子制作允許偏差總和及鋼柱壓縮變形總和就算合格;二是,按設計標高制作安裝土建的標高安裝第一節鋼柱底面標高,每節鋼柱的累加尺寸總和應符合設計要求的總尺寸,每一節柱子的接頭產生的收縮變形和豎向荷載作用下引起的壓縮變形應加到每節鋼柱加工長度中。

(3)鋼梁的安裝:鋼梁安裝的重點在于控制鋼梁與鋼柱連接形成整體后的軸線位置及垂直度,可通過限位鋼板臨時固定、多次反復校正逐步完成。

(4)焊接:高層鋼結構的現場焊接順序

應按照力求減少焊接變形和降低焊接應力的原則加以確定。在平面上,從中心框架向四周擴展焊接。

(5)高強螺栓施工技術:對于通過高強螺栓進行連接的鋼結構,制作時必須首先注意高強螺栓摩擦面的加工質量及安裝前的保護,并應按標準要求對每兩千噸每種規格每種加工工藝的高強螺栓摩擦面進行抗滑移系數試驗。鋼構件角度偏差將嚴重影響構件組裝時的高強螺栓穿孔率。論文參考網。構件的扭曲會影響連接面間的間隙,因此在鋼結構制作時應準備。一定的胎架模具以控制其變形,并在構件運輸時采取切實可行的固定措施以保證其尺寸穩定性。鋼結構安裝單位在安裝高強螺栓摩擦面前,必須將摩擦面保護好,防止污染、銹蝕并在安裝前進行高強螺栓摩擦面的抗滑移系數試驗,檢查高強螺栓出廠證明批號,對不同批號的高強螺栓定期抽查并做軸力試驗,對高強螺栓安裝工藝、包括操作順序、安裝方法、緊固順序、初擰、終擰,進行嚴格控制檢查,擰螺栓的扭力扳手應進行標定等。

3.結語

鋼結構項目施工過程中的問題非常復雜,主要是由于引發質量問題的因素繁多,產生質量問題的原因也復雜,即使是同一性質的質量問題,原因有時也不一樣。因此,在鋼結構的施工中應嚴格按照施工程序和施工規程進行,不得無圖施工和隨意修改設計圖紙。

參考文獻

[1]路克寬.鋼結構工程便攜手冊[M].北京:機械工業出版社,2003.

[2]顧紀清.實用鋼結構施工手冊[M].上海:上海科學技術出版社,2005.

[3]鮑廣鑒.鋼結構施工技術及實例[M].北京:中國建筑工業出版社,2005.

[4]輕鋼結構在中國發展的現狀、前景與對策[R].中國冶金報,2004.

篇8

英文名稱:Journal of Seismological Research

主管單位:云南省地震局

主辦單位:云南省地震局

出版周期:季刊

出版地址:云南省昆明市

種:中文

本:大16開

國際刊號:1000-0666

國內刊號:53-1062/P

郵發代號:64-6

發行范圍:國內外統一發行

創刊時間:1978

期刊收錄:

CBST 科學技術文獻速報(日)(2009)

中國科學引文數據庫(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊榮譽:

聯系方式

篇9

【關鍵詞】拉索減震,橋梁抗震,應用研究

中圖分類號:U445 文獻標識碼:A

一、前言

近年來,我國在減震支座及橋梁抗震設計上雖然取得了飛速發展,但依然存在一些問題和不足需要改進,在社會經濟不斷發展的背景下,加強對拉索減震支座及橋梁抗震設計應用研究,對確保居民的切身利益有著重要意義。

二、拉索減震支座的內容

拉索減震支座可以分為滑動支座和固定支座。固定支座主要由拉索(鋼絞線、高強度鋼絲束或碳纖維)、抗剪螺栓、上座板(包括頂板和不銹鋼滑板)、聚四氟乙烯滑板、中間鋼板、密封圈、橡膠板、底盆、地腳螺栓和防塵罩等組成。滑動支座是通過取消設置在雙向滑動支座中心處的抗剪螺栓而成。 

拉索減震支座具備了普通盆式支座的優點,如在梁端傳遞的垂直荷載作用下,豎向承載能力大,梁端轉動靈活。上支座板的不銹鋼板與聚四氟乙烯板間的摩擦系數小,水平滑移能力強等,而且由于拉索的使用成功克服了傳統支座限位能力不強的弱點,能最大程度避免地震中落梁等現象的發生,并在地震后可靠復位。此外,由于盆式支座與限位索裝置已經在我國各類橋梁減隔震設計中普遍采用,因此拉索減震支座制造技術成熟,相較于同類型產品造價也相對較低。

在連續梁橋的固定墩設置拉索減震支座,在正常使用荷載作用下,抗剪螺栓能夠保證支座是固定的,此時水平荷載主要由固定墩承擔;但在強震、船撞等極端荷載作用下,當支座傳遞的水平荷載超過某一量值,抗剪螺栓剪斷,固定支座轉變成滑動支座,改變體系的傳力特性,同時水平荷載分攤給一聯的每一個橋墩,從而大大減小固定墩的受力。同時錨固于上、下座板的拉索在上、下座板間發生較大的相對位移時可以有效起到緩沖限位作用。

三、橋梁震害分析 

調查與分析橋梁的震害及其產生的原因是建立正確的抗震設計方法,采取有效抗震措施的科學依據。  

1.上部結構的破壞

橋梁上部結構本身遭受震害而被毀壞的情形不多,一般都是由于橋梁結構的其他部位的毀壞而引起的。如落梁,一種是由于彈性設計理論采用毛截面剛度,這樣就會低估橫向地震作用和位移。

2.支座連接部位的震害

這中破壞比較常見,由于連接部位的破壞會引起力傳遞方式的變化,從而對結構其他部位的抗震產生影響,進一步加重震害。這種破壞是抗震設計中最關注的問題之一。 

3.下部結構和基礎的震害

下部結構和基礎的嚴重破壞是引起橋梁倒塌,并在震后難以修復使用的主要原因。除了地基毀壞的情況,橋梁墩臺和基礎的震害是由于受到較大的水平地震力,瞬時反復振動在相對薄弱的截面產生破壞而引起的,從大量震害實例來看,比較高柔的橋墩多為彎曲破壞,矮粗的橋墩多為剪切型破壞,介于兩者之間的為混合型。

4.橋臺沉陷

當地震加速度作用時,由于橋臺填土與橋臺是不完全固結的,橋臺填土的縱向土壓力增大,橋梁與橋臺之間的沖撞會產生相當大的被動土壓力,造成橋臺有向橋跨方向移動的趨勢。由于橋面的支撐作用,橋臺將發生以橋臺頂端為支點的豎向旋轉,導致基礎破壞。如果橋臺基礎在液化土上,又將引起橋臺垂直沉陷,最終導致橋梁破壞。

四、提高橋梁抗震性能的措施

1.隔震支座法 

隔震支座法是在抗震應用的較為廣泛的方法。這種方法是通過增加結構的柔性和阻尼來減小橋梁的地震反應的。具體做法是采用減、隔震支座在梁體與墩、臺的連接處,通過設計或是應用新材料來實現結構柔性和阻尼的增加。這個方法是有大量的實驗理論依據作支撐的,很多試驗的分析結果都反映出橋梁連接處的結構與對地震的反應是有著直接關系的。以上的連接方法可以有效的減小墩、臺所受的水平地震力,從根本上減小了地震的影響,提高了橋梁的抗震性能。 

2.利用橋墩延性 

橋墩的延性是抗震設計中可以加以利用的特點。由于橋墩自身是具有延性的,將這一性質加強。在強震時,這些部位形成的穩定延性塑性鉸可以產生彈塑性變形,這樣變形將延長結構的周期同時耗散地震的能量。利用橋墩自身加強的延性,將地震力通過限度內的塑性變形漸漸分散,是在橋梁設計中比較容易實現的抗震方法。延性的抗震設計,需要根據彈性反應來計算塑性變形的程度,然后根據抗震等級進行修正,盡可能提高橋梁的抗震載荷。在橋梁的抗震設計規范中,綜合影響系數用來反映塑性變形程度,所以根據綜合系數可以知道橋梁的抗震能力。 

3.采用隔震支座和阻尼器相結合的系統 

隔震支座法可以提高橋梁的抗震性能,增加對地震力的阻尼也是提高橋梁性能的方法,將二者結合起來,抗震性能加倍。隔震支座和阻尼器可以在地震的作用下,加強橋墩的彈塑性變形從而耗散地震能量,使地震的危害減小,也就是加強了橋梁的抗震性。 

4.引進新型橋梁的抗震設計方法 

在新型的橋梁設計多采用型鋼混凝土結構,這種結構與傳統的混凝土結構有著很多先進之處。因為型鋼混凝土結構的承載能力高于同樣外形的鋼筋混凝土的一倍以上,而且前者抗剪能力、延性都明顯的高于后者,這樣抗震能力自然得到提到。除此之外,新型的型鋼混凝土結構能夠吸收、隔離和耗散地震能量,將橋梁的地震反應減小,從而避免了較大的變形造成的不可恢復的變形。這樣的結構不但提高了橋梁結構的安全度,而且還可以節約材料、降低造價,可以說是首選的抗震方法。 

五、拉索減震支座及橋梁抗震設計應用

根據以上的分析可以看出,隨著支座所受豎向力的逐步增加,支座摩擦系數有減小趨勢,摩擦耗能性能基本處于穩定(滯回曲線趨于平穩,且各級豎向荷載作用下重復性較好),拉索在上頂板、下底板相對位移超過特定值后起到限位作用,支座滯回曲線有突變;試驗所得滯回曲線形式與理想恢復力模型保持一致,印證了理論推導的正確性。同濟大學曹新建博士通過建立有限元模型,研究了拉索減震支座的減震效果,結果表明拉索減震支座滯回曲線計算數據與試驗所得數據吻合較好,拉索減震支座的有限元模擬是切實可行的。

在中等地震或者強震作用下,常規連續梁結構的支座、橋墩、橋梁基礎(一般為樁基礎)等橋梁構件通常是易損部位,特別是固定墩處的橋梁結構構件。通過引入減隔震技術可以使橋梁下部結構的地震力減小。一般可以將作為上、下部結構傳力核心的橋梁支座設計為減隔震支座,達到減隔震的效果。新型拉索減震支座的力學特性比較簡單,既發揮了滑動摩擦耗能的功能,又通過拉索的限位保證了支座和梁體在正常范圍內工作,而且支座具有較強的經濟適用性.在橋梁結構的動力計算中此支座也可以得到合理的模擬。通過在傳統固定墩上使用拉索減震支座,能夠明顯減小固定墩墩底的地震內力,同時墩、梁相對變形也在可控制范圍內.如果連續梁結構全部采用拉索減震支座,則所有的橋墩共同承擔縱橋向地震力,

較常規支座布置的橋梁地震受力更為合理。拉索減震支座的初始間距、摩擦系數都會影響到橋梁的減隔震效果。拉索間距應該根據選定的地震輸入、地震動強度設計為合理的數值,太小或者太大都不利于合理發揮其減隔震作用。

六、結束語

隨著橋梁抗震技術的不斷完善,拉索減震支座及橋梁抗震設計應用將會得到更多管理者的重視,在預防一些不可預料的突發狀況的背景下,拉索減震支座及橋梁抗震設計應用研究將會發揮著越來越重要的作用。

參考文獻

[1] 王宏謀.橋梁盆式橡膠支座的研究與應用[D],成都: 西南交通大學碩士論文,2008.

[2] 曹新建.大型橋梁的抗震能力設計策略[D],上海: 同濟大學博士論文,2009.

篇10

【關鍵詞】高層建筑;結構工程;抗震設計

一、結構抗震設計的重要性

地震是一種隨機振動,有難于把握的復雜性和不確定性,要準確預測建筑物所遭遇地震的特性和參數,目前尚難做到。在結構分析方面,由于未能充分考慮結構的空間作用、結構材料的非彈性性質、材料時效、阻尼變化等多種因素,同時也存在著不準確性。因此,工程抗震問題不能完全依賴“計算設計”解決,而必須立足于“概念設計”。概念設計是指設計人員從結構的宏觀整體出發,用結構系統的觀點,著眼于結構整體反應,正確地解決總體方案、材料使用、分析計算、截面設計和細部構造等問題,力求得到最為經濟、合理的結構設計方案以達到合理抗震設計的目的。結構抗震概念設計的目標是使整體結構能發揮耗散地震能量的作用,避免結構出現敏感的薄弱部位。地震能量的聚散,如果僅集中在少數薄弱部位,必會導致結構過早破壞,目前各種抗震設計方法的前提之一就是假定整個結構能發揮耗散地震能量的作用,在此前提下才能以多遇地震作用進行結構計算、構件截面設計并輔以相應的構造措施,必要時采用彈性時程分析法進行補充計算,試圖達到罕遇地震作用下結構不倒塌的目標。

二、高層混凝土建筑結構抗震設計策略

1、從建筑的全局出發

高層混凝土建筑結構設計要從建筑的全局出發,全面考慮各種建筑部位的功能,在此基礎上,科學設計每個部分的構件,保證每個部件之間的契合,促使每個部件或者是若干部件組合起來可以完成某一特定的設計要求,滿足一定的現實需求,同時,通過抗震設計,使得每個構件都可以具有相應的承載力,當地震來襲,每個構件都可以有著一定的次序先后破會,整體組合構件將會有著更強大的承載力和柔性,從而延緩地震破壞的速度,消耗爆發的能量。增強建筑的整體抗震能力。

2、地基選址

地基選址是進行建筑結構設計的基礎,因此,在房間結構抗震設計中,要科學避開山嘴,山包,陡坡,河流等不利因素,要本著堅硬,牢固,平坦,開闊的選址原則。親身實地,利用先進技術設備,進行地質勘探,山石水土監測,并取樣論證,科學嚴謹分析。力求使得整個地基牢固可靠,地質穩定無滲漏,無坍塌,無暗河,無熔巖,無火山……從而保證整個地基不會因為承載而發生小范圍的坍塌。影響到整體承載能力和抗震能力設計。

3、高度的確定

按我國現行高層建筑混凝土結構技術規程(JGJ3-2002)規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。這個高度是我國目前建筑科研水平、經濟發展水平和施工技術水平下,較為穩妥的,也是與目前整個土建規范體系相協調的。可實際上,已有許多混凝土結構高層建筑的高度超過了這個限制。對于超高限建筑物,應當采取科學謹慎的態度:一要有專家論證,二要有模型振動臺試驗。在地震力作用下,超高限建筑物的變形破壞性態會發生很大的變化。因為隨著建筑物高度的增加,許多影響因素將發生質變,即有些參數本身超出了現有規范的適宜范圍,如安全指標、延性要求、材料性能、荷載取值、力學模型選取等。

4、材料的選用和結構體系

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。我國150m以上的建筑,采用的三種主要結構體系(框—筒、筒中筒和框架—支撐體系),都是其他國家高層建筑采用的主要體系。但國外,特別在地震區,是以鋼結構為主,而在我國鋼筋混凝土結構及混合結構占了90%。如此高的鋼筋混凝土結構及混合結構,國內外都還沒有經受較大地震作用的考驗。在高層建筑中采用框架———核心筒體系,因其比鋼結構的用鋼量少,又可減少柱子斷面,故常被業主所看中。混合結構的鋼筋混凝土內簡往往要承受80%以上的震層剪力,有的高達90%以上。由于結構以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,且效果不大,有時不得不加大混凝土筒的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值;此外,在結構體系或柱距變化時,需要設置結構轉換層。加強層和轉換層都在本層形成大剛度而導致結構剛度突變,常常會使與加強層或轉換層相鄰的柱構件剪力突然加大,加強層伸臂構件或轉換層構件與外框架柱連接處很難實現強柱弱梁。因此在需要設置加強層及轉換層時,要慎重選擇其結構模式,盡量減小其本身剛度,減小其不利影響。

在高層建筑中,應注意結構體系及材料的優選。現在我國鋼材生產數量已較大,建筑鋼材的類型及品種也在逐步增多,鋼結構的加工制造能力已有了很大提高,因此在有條件的地方,建議盡可能采用鋼骨混凝土結構、鋼管混凝土(柱)結構或鋼結構,以減小柱斷面尺寸,并改善結構的抗震性能。在超過一定高度后,由于鋼結構質量較小而且較柔,為減小風振而需要采用混凝土材料,鋼骨(鋼管)混凝土,通常作為首選。

另外,許多高層建筑底部幾層柱雖然長細比小于4,但并不一定是短柱。因為確定是不是短柱的參數是柱的剪跨比,只有剪跨比≤2的柱才是短柱。有專家學者提出現行抗震規范應采用較高軸壓比。但是即使能調整軸壓比限值,柱斷面并不能由于略微增大軸壓比限值而顯著減小。因此在抗震的超高層建筑中采用鋼筋混凝土是否合理值得商榷。

總之,鋼筋混凝土框架結構是我國大量存在的建筑結構形式之一,鋼筋混凝土框架結構的柱端與節點的破壞較為嚴重,其抗震設計中應該鋼筋混凝土高層建筑結構抗震關鍵設計,另外,必須滿足“強柱弱梁”“、強剪弱彎”“、強節點”“、強底層柱底”等延性設計原則和有關規定。

5、運用延性設計

結構良好的延性有助于減小地震作用,吸收與耗散地震能量,避免結構倒塌。因此,結構設計應力求避免構件的剪切破壞,爭取更多的構件實現彎曲破壞。始終遵循“強柱弱梁,強煎弱彎、強節點、弱錨固”原則。構件的破壞和退出工作,使整個結構從一種穩定體系過渡到另外一種穩定體系,致使結構的周期發生變化,以避免地震卓越周期長時間持續作用引起的共振效應。

三、結語

總之,高層建筑結構的抗震設計方法和技術是不斷變化和進步的,需要在具體的實踐中對高層建筑所處的地質和環境進行詳細的分析和研究,選用適合的抗震結構,注重建筑結構材料的選擇,減小地震的作用力,增強地震的抵抗力,從而達到高層建筑抗震的目的。

參考文獻:

[1]計靜.套建增層預應力鋼骨混凝土框架抗震性能與設計方法研究.哈爾濱工業大學博士學位論文,2008.

[2]蔣新梅.高層建筑結構的抗震設計[J].廣東科技.2009(08)