納米金屬材料范文10篇

時(shí)間:2024-02-29 03:13:52

導(dǎo)語(yǔ):這里是公務(wù)員之家根據(jù)多年的文秘經(jīng)驗(yàn),為你推薦的十篇納米金屬材料范文,還可以咨詢客服老師獲取更多原創(chuàng)文章,歡迎參考。

納米金屬材料

納米金屬材料分析論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要包括:

l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

查看全文

納米金屬材料發(fā)展論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要包括:

l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

查看全文

納米金屬材料進(jìn)展論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要包括:

l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

查看全文

納米金屬材料研究論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要包括:

l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

查看全文

納米金屬材料挑戰(zhàn)論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

3納米材料的奇異性能

查看全文

納米金屬材料發(fā)展研究進(jìn)展論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

3納米材料的奇異性能

查看全文

納米金屬材料管理論文

1引言

40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無(wú)序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來(lái),人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructuredmaterials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。

經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。

2納米材料的制備與合成

材料的納米結(jié)構(gòu)化可以通過多種制備途徑來(lái)實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。

3納米材料的奇異性能

查看全文

金屬基復(fù)合材料在鋅鍍層中應(yīng)用論文

【摘要】鋅鍍層的使用壽命取決于鍍層的耐蝕能力,為達(dá)到提高其耐蝕能力目的,文章探討了納米CeO2/Zn金屬基復(fù)合材料在鋅鍍層中的應(yīng)用,并從其應(yīng)用的優(yōu)越性和可行性方面作了分析。

【關(guān)鍵詞】鋅鍍層;耐蝕;納米氧化鈰;金屬基復(fù)合材料

鋅鍍層用于防止鋼鐵制品的銹蝕,已有200多年的歷史,至今,它在鋼鐵材料防蝕涂層中仍占有重要的地位。鋅鍍層的使用壽命取決于鍍層的耐蝕能力,鍍層的耐蝕能力越強(qiáng),則鍍層的使用壽命就越長(zhǎng)。隨著日益發(fā)展的科技與經(jīng)濟(jì)的需要,如何更好的改善鍍層的耐蝕能力對(duì)鍍層材料提出了更高的要求。

一、土元素在鍍鋅防腐蝕應(yīng)用研究中的進(jìn)展

隨著對(duì)稀土材料的開發(fā)研究,人們逐漸認(rèn)識(shí)到其優(yōu)越性,并將其應(yīng)用在不同領(lǐng)域。20世紀(jì)80年代,Hinton和Wilson首次研究了稀土對(duì)純鋅的緩蝕作用,發(fā)現(xiàn)1.0g/L的CeCL3可使純鋅的腐蝕速率降低到原來(lái)的1/10,使電鍍鋅的腐蝕速率降低到原來(lái)的1/2,腐蝕試驗(yàn)完畢后純鋅和電鍍鋅表面形成了一層黃色的膜。之后,Hinton進(jìn)一步研究了純鋅和電鍍鋅表面的稀土轉(zhuǎn)化膜的成分和結(jié)構(gòu),發(fā)現(xiàn)膜中主要組成物質(zhì)是CeO2和Zn,并且Ce是以四價(jià)形式存在于膜中的。昆明理工大學(xué)的郭忠誠(chéng)副教授在1996年第5期的《金屬學(xué)報(bào)》中發(fā)表過一篇《稀土對(duì)復(fù)合鍍工藝及鍍層性能的影響》,研究了稀土對(duì)Ni-SiC復(fù)合鍍工藝及鍍層性能的影響。結(jié)果表明,添加適量的稀土能顯著地提高復(fù)合鍍層中微粒的含量、硬度和耐磨性。

已有研究表明,加入稀土氧化物CeO2所產(chǎn)生作用如下:

查看全文

工業(yè)設(shè)計(jì)的新材料與新工藝研究

摘要:面向工業(yè)設(shè)計(jì)的新材料與新工藝的應(yīng)用研究,本文首先對(duì)如今材料和工藝的發(fā)展進(jìn)行概述,然后介紹了新材料和新工藝在工業(yè)設(shè)計(jì)的應(yīng)用研究,最后提出了要建立工業(yè)設(shè)計(jì)的材料與工業(yè)數(shù)據(jù)庫(kù)。

關(guān)鍵詞:新材料;新工藝;應(yīng)用研究

1前言

科學(xué)技術(shù)和人類文化藝術(shù)的有機(jī)融合誕生了工業(yè)設(shè)計(jì),而工業(yè)設(shè)計(jì)想要發(fā)展就需要材料的應(yīng)用和加工技術(shù)的不斷發(fā)展,這不僅關(guān)系到設(shè)計(jì)的內(nèi)涵也關(guān)系著設(shè)計(jì)的實(shí)用性。下面我們就淺談了一下新材料和新工藝的應(yīng)用研究。

2如今材料和工藝的發(fā)展概述

材料的開發(fā),最原始的石器時(shí)代使用的獸皮、泥土等天然的材料,到了后來(lái)是用火制造的材料,再到了二十世紀(jì)主要是利用物理和化學(xué)原理合成的材料,其中有合成高分子材料、功能高分子材料和合金材料等。到了二十世紀(jì)五十年代出現(xiàn)了如金屬陶瓷等材質(zhì)的復(fù)合化材料,二十世紀(jì)后期主要是利用信息技術(shù)等。到了二十世紀(jì),材料的材質(zhì)種類愈加豐富,工藝水平也愈加的豐富多彩,這其中有鍛造工藝、壓力加工工藝等。

查看全文

行政職業(yè)能力測(cè)驗(yàn)自然科技常識(shí)3

一、現(xiàn)代生物技術(shù)

現(xiàn)代生物技術(shù)是以DNA分子技術(shù)為基礎(chǔ),包括微生物工程、細(xì)胞工程、酶工程、基因工程等一系列生物高新技術(shù)的總稱。現(xiàn)代生物技術(shù)在農(nóng)作物改良、醫(yī)藥研究、食品工程、治理污染、環(huán)境生物監(jiān)測(cè)等方面發(fā)揮著重要的作用。由于現(xiàn)代生物技術(shù)對(duì)解決人類面臨的重大問題如:糧食、健康、環(huán)境和能源等將開辟?gòu)V闊的前景,因此越來(lái)越為各國(guó)政府和企業(yè)界所關(guān)注,與信息、新材料和新能源技術(shù)并列成為影響國(guó)計(jì)民生的四大科學(xué)技術(shù)支柱,是21世紀(jì)高新技術(shù)產(chǎn)業(yè)的先導(dǎo)。

(一)遺傳工程

遺傳工程的研究發(fā)展,為器官移植提供了一個(gè)很有前途的新手段——利用動(dòng)物的器官代替人的器官。科學(xué)研究表明人體異種器官移植,豬較為合適。首先豬器官的大小與人的相當(dāng),生理上也比較接近;其次豬在無(wú)病原體條件下比較容易飼養(yǎng)和容易保證無(wú)病的供體;此外豬的繁殖率高,每窩可產(chǎn)十幾只豬崽,存活率也較高。為了保證植入的器官不被排斥,生物學(xué)者正在培養(yǎng)具有人的基因的新型豬,這種豬叫轉(zhuǎn)基因豬。

在農(nóng)業(yè)生物技術(shù)中,轉(zhuǎn)基因動(dòng)植物的研究與開發(fā)最為突出。1983年轉(zhuǎn)基因植物問世,1986年被批準(zhǔn)進(jìn)入田間試驗(yàn),根據(jù)美國(guó)農(nóng)業(yè)部動(dòng)植物檢疫局(APHIS)的數(shù)據(jù),截止1997年1月31日,美國(guó)已批準(zhǔn)的轉(zhuǎn)基因植物田間試驗(yàn)達(dá)2584例。近年來(lái),抗除草劑的大豆、抗病毒病的甜椒、抗腐能力強(qiáng)、耐貯性高的番茄、具有高含量必須氨基酸的馬鈴薯等轉(zhuǎn)基因植物開始進(jìn)入市場(chǎng),成為農(nóng)業(yè)生物技術(shù)的第一批成果;轉(zhuǎn)基因的瘦肉型豬、高產(chǎn)奶的奶牛和能從奶中提取藥物的轉(zhuǎn)基因羊等也將進(jìn)入實(shí)用化階段。未來(lái)農(nóng)業(yè)的模式將是:農(nóng)業(yè)工廠化,按人類要求高水平的控制環(huán)境因素,實(shí)現(xiàn)規(guī)模化、機(jī)械化、自動(dòng)化生產(chǎn),產(chǎn)生質(zhì)量穩(wěn)定、供應(yīng)穩(wěn)定、價(jià)格穩(wěn)定、營(yíng)養(yǎng)豐富的農(nóng)業(yè)產(chǎn)品;安全的轉(zhuǎn)基因動(dòng)植物投放市場(chǎng);具有營(yíng)養(yǎng)保健、醫(yī)療功效的獵牛羊、蔬菜水果等轉(zhuǎn)基因食品大批走向餐桌。

農(nóng)業(yè)生物技術(shù)的應(yīng)用在我國(guó)也取得了豐碩成果,我國(guó)用花藥培養(yǎng)、染色體工程等育種技術(shù)培養(yǎng)出才稻、小麥、油菜、橡膠等一批作物新品種、新品系、新種質(zhì)。其中較突出的有京花3號(hào)、小偃1o7號(hào)小麥和中花1o號(hào)水稻等新品種,具有優(yōu)質(zhì)高產(chǎn)、抗病、抗鹽堿等特性,已經(jīng)在生產(chǎn)中推廣應(yīng)用。我國(guó)轉(zhuǎn)基因技術(shù)在家畜及魚類育種上也初見成效,中科院水生生物研究所在世界上率先進(jìn)行轉(zhuǎn)基因魚的研究''''成功地)將人生長(zhǎng)激素基因、魚生長(zhǎng)激素基因?qū)膈庺~,育成的當(dāng)代轉(zhuǎn)基因魚生長(zhǎng)速度比對(duì)照組快’并從子代測(cè)得生長(zhǎng)激素基因的表達(dá),為轉(zhuǎn)基因魚的實(shí)用化打下基礎(chǔ)。

查看全文