兩圓的公切線教案

時(shí)間:2022-06-03 11:39:00

導(dǎo)語(yǔ):兩圓的公切線教案一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢(xún)客服老師,歡迎參考。

兩圓的公切線教案

2、外公切線是指

(A)和兩圓都祖切的直線(B)兩切點(diǎn)間的距離

(C)兩圓在公切線兩旁時(shí)的公切線(D)兩圓在公切線同旁時(shí)的公切線

直接運(yùn)用外公切線的定義判斷.答案:(D)

3、教材P141練習(xí)(略)

(六)小結(jié)(組織學(xué)生進(jìn)行)

知識(shí):兩圓的公切線、外公切線、內(nèi)公切線及公切線的長(zhǎng)概念;

能力:歸納、概括能力和求外公切線長(zhǎng)的能力;

思想:“轉(zhuǎn)化”思想.

(七)作業(yè):P151習(xí)題10,11.

第二課時(shí)兩圓的公切線(二)

教學(xué)目標(biāo):

(1)掌握兩圓內(nèi)公切線長(zhǎng)的求法以及公切線與連心線的夾角或公切線的交角;

(2)培養(yǎng)的遷移能力,進(jìn)一步培養(yǎng)學(xué)生的歸納、總結(jié)能力;

(3)通過(guò)兩圓內(nèi)公切線長(zhǎng)的求法進(jìn)一步向?qū)W生滲透“轉(zhuǎn)化”思想.

教學(xué)重點(diǎn):

兩圓內(nèi)公切線的長(zhǎng)及公切線與連心線的夾角或公切線的交角求法.

教學(xué)難點(diǎn):

兩圓內(nèi)公切線和兩圓內(nèi)公切線長(zhǎng)學(xué)生理解的不透,容易混淆.

教學(xué)活動(dòng)設(shè)計(jì)

(一)復(fù)習(xí)基礎(chǔ)知識(shí)

(1)兩圓的公切線概念:公切線、內(nèi)外公切線、內(nèi)外公切線的長(zhǎng).

(2)兩圓的位置與公切線條數(shù)的關(guān)系.(構(gòu)成數(shù)形對(duì)應(yīng),且一一對(duì)應(yīng))

(二)應(yīng)用、反思

例1、(教材例2)已知:⊙O1和⊙O2的半徑分別為4厘米和2厘米,圓心距為10厘米,AB是⊙O1和⊙O2的一條內(nèi)公切線,切點(diǎn)分別是A,B.

求:公切線的長(zhǎng)AB。

組織學(xué)生分析,遷移外公切線長(zhǎng)的求法,既培養(yǎng)學(xué)生解決問(wèn)題的能力,同時(shí)也培養(yǎng)學(xué)生學(xué)習(xí)的遷移能力.

解:連結(jié)O1A、O2B,作O1A⊥AB,O2B⊥AB.

過(guò)O1作O1C⊥O2B,交O2B的延長(zhǎng)線于C,

則O1C=AB,O1A=BC.

在Rt△O2CO1和.

O1O2=10,O2C=O2B+O1A=6

∴O1C=(cm).

∴AB=8(cm)

反思:與外離兩圓的內(nèi)公切線有關(guān)的計(jì)算問(wèn)題,常構(gòu)造如此題的直角梯行及直角三角形,在Rt△O2CO1中,含有內(nèi)公切線長(zhǎng)、圓心距、兩半徑和重要數(shù)量.注意用解直角三角形的知識(shí)和幾何知識(shí)綜合去解構(gòu)造后的直角三角形.

例2(教材例3)要做一個(gè)圖那樣的礦型架,將兩個(gè)鋼管托起,已知鋼管的外徑分別為200毫米和80毫米,求V形角α的度數(shù).

解:(略)

反思:實(shí)際問(wèn)題經(jīng)過(guò)抽象、化簡(jiǎn)轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,應(yīng)用數(shù)學(xué)知識(shí)來(lái)解決,這是解決實(shí)際問(wèn)題的重要方法.它屬于簡(jiǎn)單的數(shù)學(xué)建模.

組織學(xué)生進(jìn)行,教師引導(dǎo).

歸納:(1)用解直角三角形的有關(guān)知識(shí)可得:當(dāng)公切線長(zhǎng)l、兩圓的兩半徑和R+r、圓心距d、兩圓公切線的夾角α四個(gè)量中已知兩個(gè)量時(shí),就可以求出其他兩個(gè)量.

,;

(2)上述問(wèn)題可以通過(guò)相似三角形和解三角形的知識(shí)解決.

(三)鞏固訓(xùn)練

教材P142練習(xí)第1題,教材P145練習(xí)第1題.

學(xué)生獨(dú)立完成,教師巡視,發(fā)現(xiàn)問(wèn)題及時(shí)糾正.

(四)小結(jié)

(1)求兩圓的內(nèi)公切線,“轉(zhuǎn)化”為解直角三角形問(wèn)題.公切線長(zhǎng)、圓心距、兩半徑和三個(gè)量中已知任何兩個(gè)量,都可以求第三個(gè)量;

(2)如果兩圓有兩條外(或內(nèi))公切線,并且它們相交,那么交點(diǎn)一定在兩圓的連心線上;

(3)求兩圓兩外(或內(nèi))公切線的夾角.

(五)作業(yè)

教材P153中12、13、14.

第三課時(shí)兩圓的公切線(三)

教學(xué)目標(biāo):

(1)理解兩圓公切線在解決有關(guān)兩圓相切的問(wèn)題中的作用,輔助線規(guī)律,并會(huì)應(yīng)用;

(2)通過(guò)兩圓公切線在證明題中的應(yīng)用,培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力.

教學(xué)重點(diǎn):

會(huì)在證明兩圓相切問(wèn)題時(shí),輔助線的引法規(guī)律,并能應(yīng)用于幾何題證明中.

教學(xué)難點(diǎn):

綜合知識(shí)的靈活應(yīng)用和綜合能力培養(yǎng).

教學(xué)活動(dòng)設(shè)計(jì)

(一)復(fù)習(xí)基礎(chǔ)知識(shí)

(1)兩圓的公切線概念.

(2)切線的性質(zhì),弦切角等有關(guān)概念.

(二)公切線在解題中的應(yīng)用

例1、如圖,⊙O1和⊙O2外切于點(diǎn)A,BC是⊙O1和⊙O2的公切線,B,C為切點(diǎn).若連結(jié)AB、AC會(huì)構(gòu)成一個(gè)怎樣的三角形呢?

觀察、度量實(shí)驗(yàn)(組織學(xué)生進(jìn)行)

猜想:(學(xué)生猜想)∠BAC=90°

證明:過(guò)點(diǎn)A作⊙O1和⊙O2的內(nèi)切線交BC于點(diǎn)O.

∵OA、OB是⊙O1的切線,

∴OA=OB.

同理OA=OC.

∴OA=OB=OC.

∴∠BAC=90°.

反思:(1)公切線是解決問(wèn)題的橋梁,綜合應(yīng)用知識(shí)是解決問(wèn)題的關(guān)鍵;(2)作兩圓的公切線是常見(jiàn)的一種作輔助線的方法.

例2、己知:如圖,⊙O1和⊙O2內(nèi)切于P,大圓的弦AB交小圓于C,D.

求證:∠APC=∠BPD.

分析:從條件來(lái)想,兩圓內(nèi)切,可能作出的輔助線是作連心線O1O2,或作外公切線.

證明:過(guò)P點(diǎn)作兩圓的公切線MN.

∵∠MPC=∠PDC,∠MPN=∠B,

∴∠MPC-∠MPN=∠PDC-∠B,

即∠APC=∠BPD.

反思:(1)作了兩圓公切線MN后,弦切角就把兩個(gè)圓中的圓周角聯(lián)系起來(lái)了.要重視MN的“橋梁”作用.(2)此例證角相等的方法是利用已知角的關(guān)系計(jì)算.

拓展:(組織學(xué)生研究,培養(yǎng)學(xué)生深入研究問(wèn)題的意識(shí))

己知:如圖,⊙O1和⊙O2內(nèi)切于P,大圓⊙O1的弦AB與小圓⊙O2相切于C點(diǎn).

是否有:∠APC=∠BPC即PC平分∠APB.

答案:有∠APC=∠BPC即PC平分∠APB.如圖作輔助線,證明方法步驟參看典型例題中例4.

(三)練習(xí)

練習(xí)1、教材145練習(xí)第2題.

練習(xí)2、如圖,已知兩圓內(nèi)切于P,大圓的弦AB切小圓于C,大圓的弦PD過(guò)C點(diǎn).

求證:PA·PB=PD·PC.

證明:過(guò)點(diǎn)P作兩圓的公切線EF

∵AB是小圓的切線,C為切點(diǎn)

∴∠FPC=∠BCP,∠FPB=∠A

又∵∠1=∠BCP-∠A∠2=∠FPC-∠FPB

∴∠1=∠2∵∠A=∠D,∴△PAC∽△PDB

∴PA·PB=PD·PC

說(shuō)明:此題在例2題的拓展的基礎(chǔ)上解得非常容易.

(三)總結(jié)

學(xué)習(xí)了兩圓的公切線,應(yīng)該掌握以下幾個(gè)方面

1、由圓的軸對(duì)稱(chēng)性,兩圓外(或內(nèi))公切線的交點(diǎn)(如果存在)在連心線上.

2、公切線長(zhǎng)的計(jì)算,都轉(zhuǎn)化為解直角三角形,故解題思路主要是構(gòu)造直角三角形.

3、常用的輔助線:

(1)兩圓在各種情況下常考慮添連心線;

(2)兩圓外切時(shí),常添內(nèi)公切線;兩圓內(nèi)切時(shí),常添外公切線.

4、自己要有深入研究問(wèn)題的意識(shí),不斷反思,不斷歸納總結(jié).

(四)作業(yè)教材P151習(xí)題中15,B組2.

探究活動(dòng)

問(wèn)題:如圖1,已知兩圓相交于A、B,直線CD與兩圓分別相交于C、E、F、D.

(1)用量角器量出∠EAF與∠CBD的大小,根據(jù)量得結(jié)果,請(qǐng)你猜想∠EAF與∠CBD的大小之間存在怎樣的關(guān)系,并證明你所得到的結(jié)論.

(2)當(dāng)直線CD的位置如圖2時(shí),上題的結(jié)論是否還能成立?并說(shuō)明理由.

(3)如果將已知中的“兩圓相交”改為“兩圓外切于點(diǎn)A”,其余條件不變(如圖3),那么第(1)題所得的結(jié)論將變?yōu)槭裁矗坎⒆鞒鲎C明.

提示:(1)(2)(3)都有∠EAF+∠CBD=180°.證明略(如圖作輔助線).

說(shuō)明:?jiǎn)栴}從操作測(cè)量得到的實(shí)驗(yàn)數(shù)據(jù)入手,進(jìn)行數(shù)據(jù)分析,歸納得出猜想,進(jìn)而證明猜想成立.這也是數(shù)學(xué)發(fā)現(xiàn)的一種方法.第(2)、(3)題是對(duì)第(1)題結(jié)論的推廣和特殊化.第(3)題中若CD移動(dòng)到與兩圓相切于點(diǎn)C、D,那么結(jié)論又將變?yōu)椤螩AD=90°.