電子壓力計數據傳輸論文

時間:2022-06-20 09:29:00

導語:電子壓力計數據傳輸論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

電子壓力計數據傳輸論文

論文關鍵詞:直讀式電子壓力計;單芯遠距離傳輸;曼徹斯特碼;編碼;解碼

論文摘要:本文從現有存儲式電子壓力計的技術現狀出發,分析了在井下高溫、高壓、遠距離條件下,實現壓力、溫度數據實時可靠采集、傳輸、分析的壓力計——直讀式電子壓力計的數據傳輸方案和實施,并從技術需求分析、通訊方案選擇、單芯遠距離傳輸、曼徹斯特碼編解碼的軟硬件設計等方面,對直讀式電子壓力計數據傳輸方案進行了深入研究。試驗數據分析結果表明,本文研究結果解決了直讀式電子壓力計的關鍵技術,增強了電子壓力計在油田測井領域的市場競爭力。

一、引言

目前存儲式電子壓力計已廣泛應用于國內各大油田高溫井下壓力和溫度的測量。存儲式電子壓力計在工作過程中,儀器內的單片機系統和各種傳感器共同完成井下壓力和溫度的采集,并以數字量形式存儲于電可改寫型存儲器中,待測試過程完成后,再將壓力計返回地面,用專門配套研制的數據回放儀與壓力計連接,通過軟件和硬件接口通訊進行數據的接收、回放和處理,使用很不方便,影響生產。

因此,為克服存儲式電子壓力計的上述缺點,提高油田生產效率,提升電子壓力計在油田測井領域的市場競爭力,必須研制在井下高溫、高壓、遠距離條件下,實現壓力、溫度數據實時可靠采集、傳輸、分析的壓力計——直讀式電子壓力計。

二、直讀式電子壓力計技術需求分析

(一)功能及主要技術指標要求

直讀式電子壓力計實現井下壓力和溫度參數的測量,并將測量結果通過單芯鎧裝電纜實時傳送至地面解碼控制儀,主要技術指標要求如下所示。

a)壓力測量范圍:(0~30、45、60、80)MPa;壓力測量誤差:0.04%F.S;

b)溫度測量范圍:(-20~+150)℃,測量誤差:±1℃;

c)傳輸距離不小于6000m;通訊誤碼率1.0×10-7。

(二)基本方案及工作原理

直讀式電子壓力計由井下電子壓力計和地面解碼控制儀兩部分組成,其中井下電子壓力計由壓力傳感器、溫度傳感器、信號放大電路、模數轉換電路、單片機系統、編碼電路、數字通訊接口電路和裝載于單片機系統中的相關工作軟件組成,解碼控制儀由解碼電路、通訊接口電路、通用計算機(油田配置)和相關工作軟件組成。

工作過程中,井下電子壓力計由地面解碼控制儀通過單芯鎧裝電纜提供能源,溫度和壓力傳感器分別將環境壓力和溫度轉換為電信號輸出,該電信號經放大和模數轉換后由單片機系統進行數據實時采集和處理,然后按一定周期經數字通訊口輸出。井下電子壓力計和井上解碼控制儀之間通過單芯鎧裝電纜連接,解碼控制儀中通訊接口電路接收井下電子壓力計輸出的壓力和溫度數據,并經解碼后輸入計算機中進行實時分析和處理。

三、數據傳輸方案選擇

設備之間數據通訊通常有并行通訊和串行通訊兩種方案,并行通訊的缺點是傳輸距離短,通訊信道所占點號多,而串行通訊與之相反。根據井下電子壓力計與井上解碼控制儀的數據傳輸特點,需選擇串行數據傳輸方式。

在曼徹斯特編碼中,用電壓跳變的相位不同來區分邏輯1和邏輯0,即用正的電壓跳變表示邏輯0,用負的電壓跳變表示邏輯1。

在油田測井中,井下電子壓力計在井下采集大量信息,并傳送給地面解碼控制儀;但井下電子壓力計到地面解碼控制儀這段信道的傳輸距離較長且環境惡劣,常用的NRZ碼不適合在這樣的信道里傳輸,而且NRZ碼含有豐富的直流分量,容易引起滾筒的磁化。曼徹斯特編碼方式使得信號以串行脈沖碼的調制方式在數據線上傳輸,和最常用的NRZ碼相比,消除了NRZ碼的直流成分,具有時鐘恢復和更好的抗干擾性能,這使它更適合于從井下到井上的信道傳輸,因而在井下電子壓力計和地面解碼控制儀之間選用曼徹斯特編碼使數據傳輸可靠性更高、傳輸距離更遠。

四、曼徹斯特碼編碼軟硬件設計

每一周期井下電子壓力計需將采集到的壓力和溫度兩個參數分別進行曼徹斯特編碼方式輸出,井下電子壓力計與地面解碼控制儀之間按如下通訊協議進行。

a)壓力與溫度均以字為單位進行傳送,先發送壓力字,后發送溫度字,一個壓力字和一個溫度字的組合稱為一個消息;

b)每一個字由20位組成,第1~3位為3個起始位,第4~19位為16個數據位,第20位為奇偶校驗位;

c)壓力字3個起始位電平為先高后低,溫度字起始位為先低后高,高低電平均各占一位半,壓力字與溫度字校驗位均采用奇校驗;

d)傳輸的波特率:5.7292kbps(175μs/位),傳輸一個消息共耗時3.5ms。為保證數據傳輸可靠性,井下電子壓力計同一消息在一個采樣周期內重復發送兩次,地面解碼控制儀根據校驗位判斷每個字的正確性。

由單片機編程輸出兩路I/O控制信號,經過濾波電路、運放電路、整型電路后,產生曼徹斯特編碼雙相電平信號,并經單芯鎧裝電纜送至地面解碼控制儀。為滿足曼徹斯特編碼格式及井下電子壓力計與地面解碼控制儀之間的通訊協議,井下電子壓力計軟件采用如下的編程方式輸出波形。

a)壓力字同步頭為262.5μs高電平后跟隨262.5μs低電平,溫度字同步頭為262.5μs低電平后跟隨262.5μs高電平;

b)若數據位為邏輯0,則在87.5μs低電平后跟隨87.5μs高電平;

c)若數據位為邏輯1,則在87.5μs高電平后跟隨87.5μs低電平;

d)校驗位的波形產生方式與數據位相同。

五、曼徹斯特碼解碼軟硬件設計

地面解碼控制儀需將井下電子壓力計輸出的曼徹斯特碼進行解碼,并按通訊協議用軟件將接收到的曼徹斯特碼數據轉換為井下電子壓力計測得的壓力和溫度數據,即地面解碼控制儀中的解碼過程為井下電子壓力計編碼過程的逆過程。曼徹斯特碼解碼過程可分為如下三部分:

a)同步字頭檢測,并辨別其為溫度數據還是壓力數據。

b)對曼碼形式的數據進行解碼,從曼徹斯特碼波形中分離出同步時鐘,并將時鐘和數據進行處理使曼碼數據轉化為非歸零二進制數據。

c)將串行數據轉化為并行數據,并進行奇偶校驗,以檢驗數據傳輸的正確性。

經過幾千米鎧裝電纜傳輸上來的數據,幅度衰減到毫伏級,因此井上需要精密的解碼電路,才能保證數據傳輸無誤碼率。井下傳輸上來的數據經過濾波電路、精密運算放大器、雙D觸發器輸出曼碼波形給單片機,經過單片機的程序轉化為井下的壓力與溫度數字量。

六、試驗結果

直讀式電子壓力計首臺產品完成廠內試驗后,到油田用8000m的鎧裝電纜連接井下電子壓力計和地面解碼控制儀,將電子壓力計下放到井下6500m的深度,在溫度高達150℃、壓力為30~60MPa的油井中測試壓力和溫度。在三次連續5個小時的測試過程中,數據傳輸準確可靠,沒有出現丟點現象,誤碼率為零。

七、結束語

試驗數據統計分析結果表明,本文研究結果解決了直讀式電子壓力計通訊方案、通訊協議、單芯遠距離傳輸、曼徹斯特碼編解碼軟硬件設計等關鍵技術,增強了電子壓力計在油田測井領域的市場競爭力。

參考文獻:

[1]1553B總線及其在測控網絡中的應用.計量與測試技術.侯青劍.2005.3

[2]《采油工程手冊》.萬仁薄