煤化工熱能系統的評價方法探討

時間:2022-07-07 11:01:06

導語:煤化工熱能系統的評價方法探討一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

煤化工熱能系統的評價方法探討

1化工熱能動力聯合生產技術

[1]長期以來,不同功能系統多是相互獨立的。常規熱能動力系統的核心為熱力循環,側重于熱與功的轉換利用,局限于物理能范疇,受制于卡諾理論框架。而傳統化工生產則側重于化工工藝,想方設法把原料中的有效成分最大程度地轉化為產品。它們追求單一功能目標的思路無法破解能耗高、化學能損失大及環境污染嚴重等難題。因此,系統整合思想受到重視,多能源互補和多產品聯產已成為當今世界能源動力系統發展的主要趨勢與特征。多聯產是指通過系統集成把化工過程和熱能動力系統整合,在完成發電、供熱等熱工功能的同時生產化工產品,實現多領域的多功能綜合,其本質特征是系統集成,更合理的物質與能量綜合梯級轉換利用。圖1為某化工熱能動力多聯產示意圖。根據圖1,化工生產過程為原料的加工和轉換過程。在此過程中,需要與熱能動力系統發生諸多聯系,包括由熱能動力系統供給反應所需的蒸汽和動力裝置所需的電力等,而化工過程副產的部分蒸汽可進入熱能動力系統中,進行全廠的平衡。現代化工生產在探求分產能效提高的同時,越來越趨向于追求總體效能的提高。例如,通過對某煤制烯烴項目的驗收,發現全廠熱能動力系統約占總耗能的28%,工藝裝置能耗占總耗能的72%。工藝系統的能源效率很難進一步提高,但是熱電的爐機配置和供電模式對全廠綜合能效影響較大,進行系統優化后可較大程度提高全廠綜合能效水平。圖2為煤氣化熱能動力多聯產在化學工業中的應用。圖2所示項目以最大限度地優化利用煤氣化產生的合成氣組分為基礎,向化工生產裝置(如,醋酸、醋酐裝置)提供CO氣體,向化工生產裝置(如,合成氨裝置)提供H2,同時充分利用合成氣中的CO2生產尿素等,從源頭上減少溫室氣體的排放,并進行酸性氣體的處理,實現脫硫;部分合成氣經過處理后進入燃氣輪機,燃機排氣進入余熱鍋爐,余熱鍋爐產生的蒸汽部分直接用于供熱,其余進入汽輪發電機組,從而實現熱能、動力多聯產。傳統煤化工產業存在能耗高、污染重、規模小、工藝技術落后等局限,其發展正面臨著原料供應、環保、新興產業沖擊等三個方面的挑戰,而燃煤電廠在發展過程中也遇到能源利用效率沒有實質性突破和環保壓力越來越大的困境。煤化工和發電兩個系統單獨運行時,對能源和資源的利用并不是最充分的。如果把發電和煤化工結合起來,可以使得溫度、壓力、物質的梯級利用達到最佳,實現效率最高、排放最小,兩者相互結合和促進。煤氣化熱能動力多聯產是將煤氣化產生的合成氣經過處理后,用于聯合循環發電和用于化工產品的生產,其比例可以調節,并且生產化工產品的弛放氣可以進入燃氣輪機發電。它是煤氣化、氣體處理、氣體分離、化工品的合成與精制和聯合循環發電五部分有機耦合的一種技術。通過整體優化,相對于獨立分產系統,其總能利用率提高,污染物排放降低,經濟效益提高,勢必成為未來能源化工產業發展的重要方向[2]。目前,煤化工熱能動力多聯產系統集成和設計優化尚未形成完整的理論體系,優化方法、評價準則等基礎問題亟待突破。對多聯產認識還存在許多誤區,如把多聯產看作是相應的化工與動力的簡單聯合,各自保持與分產時的相同流程;把多聯產簡單地理解為多產品系統等。煤化工熱能動力多聯產系統中,化工動力側多是希望運行在設計工況,而通常把熱力系統的運行工況分為設計工況和變工況。設計工況是在給定的設計參數與要求下的基準工況,隨著環境大氣條件、外界負荷或系統本身等變動,熱力系統總是處于非設計工況運行。為了避免變工況給系統分析帶來的困難,本文中采用全年運行工況,突破設計工況點的舊框架,全面考慮全部可能運行區域的特性,以及相應的評價準則與設計優化方法等。分析化工熱能動力系統的所有可能運行工作狀況(穩定工況和過渡態工況)的總和,科學地描述與評估總能系統的性能特性,對煤化工熱能動力多聯產項目的選擇具有一定的指導意義。

2傳統熱力性能評價準則

長期以來,熱力學第一定律被廣泛應用。對于單一能源輸入和單一供能輸出(如單純供熱或純發電等)的能源動力系統來說,熱效率能夠比較好地描述系統能量轉換利用的有效性與優劣,也比較簡單易懂。但對于功、熱并供與化工、動力聯產等復雜的系統,由于沒有區分功與熱、化工與電力等品位差異及其在價值上的不等價性,就不適用了。最初,功、熱并供系統常采用兩個指標(熱效率和功熱比)來綜合評估。若對比的某個系統的兩個性能指標都好,才能得出明確的結論;如果出現“一好一差”的情況,就很難評說哪一個系統更好了。有關研究相繼拓展到冷-熱-電聯產系統和熱、電分攤理論問題。盡管許多研究有了重要進展,但至今沒有解決問題,且化工-熱能-動力多聯產系統集成優化比熱-電聯產系統還要復雜得多,所以越來越多的人認識到單純從熱力學第一定律的角度,無法合理評價化工-熱能-動力多聯產系統的優劣。后來,有些學者采用熱力學第二定律。火用表示一定參數工質在基準環境下所能做功的最大可能性,將“質”與“量”結合起來去評價能量的價值,改變了人們對能的性質、能的損失和能的轉換效率等問題的傳統看法,開拓了一個新的熱工分析理念。熱力學第一定律效率(簡稱熱效率,又稱總能利用效率)是聯產系統各種形式的能量輸出的總量Qout(包括化工產品、發電量、制冷量與供熱量)與輸入能源總能量Qin(所消耗的一次能源總量)的比值。該值越高,表明系統的熱力性能越好。熱效率把化工產品與熱工產品(功、制冷量供熱量)等不同品質與品位的能量等同看待,直接相加。因此,基于熱力學第一定律的系統熱力性能評價準則,只是反映系統能量轉換利用的數量關系。既沒有對不同有效輸出的品質與品位加以區分,又沒有合理反映產生有效輸出所消耗能量的分攤情況[4]。雖然熱效率應用得最早,而且至今還得到應用,但它通常只適用于單一功能系統,而對于化工-動力聯產系統等多功能系統來說,則是不科學與不合理的。[5]在聯產系統和參照的分產系統輸出相同的產品(化工產品種類和量與熱工產品種類和量)條件下,兩者總能耗之差的相對比值即聯產系統相對節能率Esr(或Est),Esr=Qd-QcogQd(1)式(1)中:Qd———參照的分產系統總能耗;Qcog———聯產系統總能耗。相對節能率體現的是聯產系統與參照的分產系統的對比。關注聯產系統與參照分產系統相比時能源消耗的節約情況。鑒于聯產系統與分產系統中化工原料、產品與熱動原料、產品的類型和數量存在不一致的情況,需要界定邊界條件。例如,相同的能源輸入量或相同的產品輸出量等。此外,聯產系統和與其比較的參照分產系統生產的化工產品和熱工產品的類型和量以及它們之間比例(如化/動比等)應該有個合理的界定。不同的化/動比,計算出來的節能率并不相同,有時也會出現“化/動比越大,節能率就越高”的結論。有的學者通過建立多聯產系統化、電分攤理論模型,分析化工生產過程和熱-功轉換過程的性能特性、能耗分攤情況,使得計算結果更具有針對性。應用相對節能率作為聯產系統評價準則時,正確選擇相應的參照分產系統性能基準(簡稱參照基準)非常重要。通常采用定折合性能基準法和當量折比系數法等。定折合性能基準法是假定參照的分產系統中相關的性能均為一個定值時計算出的性能基準,如某焦爐煤氣聯合循環效率為52%,某焦爐煤氣制甲醇能耗44.9MJ/kg等。當量折比系數法是通過規定不同燃料之間熱值比值的一個當量折比系數來計算聯產系統的參照基準。如假定1kg焦炭的熱值與0.9714kg標準煤相當,表達不同能源之間關系。采用不同參照性能基準進行分析時,在數量變化率上有較大的差異,但總的變化趨勢大致相同。事實上,相對節能率與熱效率一樣,都把不同的有效輸出等同對待,沒有區分它們在品質與品位上的不等價性,仍局限于熱力學第一定律概念;且應用范圍較窄,特別是多能源輸入時,出現太多的參照分產系統(如雙能源輸入和雙產品輸出的系統就需4個),不但使得性能指標量的計算變得復雜,而且使系統性能定性比較模糊不清。許多學者嘗試應用熱力學第二定律來處理不同能量在品質與品位上的不等價性問題,它以各種能量的火用(最大理論做功能力)來進行統一評價,并由此推出基于熱力學第二定律的火用效率。火用效率是將功與熱合并到一個合理的綜合指標中來統一評價的準則,定義為能源動力系統輸出的總火用(Eout)與輸入的總火用(Ein)之比值,即所產功及輸出熱量中最大轉化功與輸入總火用之比值:ηex=Eout/Ein=(P+BQ)/Ein。(2)式(2)中,B為折扣系數,它指代由熱轉化為功的最大可能性,由卡諾循環效率確定,用熱力學第二定律來定量評價。火用效率比熱效率更合理之處在于:基于熱力學第一定律的評價只考慮了化工產品與熱工產品的熱性能,且忽略熱工產品中電、冷、熱之間的差別;火用效率對它們的品位或價值有不同的評價。可見,火用效率的確在熱力學上更加正確地看待不同能量的差異,注意到了不同輸出在熱力學方面的不等價性。但是,火用的概念是從熱轉功的最大可能性出發,并不適合于用來描述化工生產過程和制冷過程等能量轉換利用問題。另外,化工產品的火用與熱工產品的火用以及冷火用與熱火用等都難以選擇同一的基準環境。為此,作為評價準則同樣存在一定的不合理性。對于功-熱聯產系統來說,火用效率在熱力學上把能量的量與質相結合起來,將功與熱合并到一個綜合指標中來統一評價的準則。根據熱力學第二定律,功能夠全化為熱,而熱是不能全化為功的。兩者雖然可用同一量綱表達,但存在明顯的品位差別,功的品位比熱高得多,且功與熱在經濟上的價格也不是等價的。許多工程技術人員對經典的火用概念多限于理論上理解,與實踐應用相距甚遠,因此,至今未能得到普遍使用。如果從其它角度來定量評定不同能量的價值,就可以得出另一種不同能量價值比和定義出另一種評價準則,或者稱之為廣義的火用效率。經濟火用效率ηEC提出另一種規定價值比B的方法,即系統供熱與供電(功)的售價之比:B=CR/CW。(3)式(3)中,價值比B聯系實際的經濟效益,一定程度上更實際地反映功、熱并供裝置的性能,從而反映出熱力系統的能量轉換利用的優劣。經濟火用效率只考慮了熱與電(功)的售價比,沒有考慮不同燃料的價格不同。這在比較使用不同燃料(其價格可能差別很大,如汽油與原煤)的裝置時就不夠全面。為了改進這一點,可在經濟火用效率的基礎上再加上燃料價格的考慮,從而提出經濟火用系數XEC,XEC=ηEC×Cw/Cf。(4)式(4)中,Cw/Cf是單位能量電(功)與燃料的價格比,反映了燃料投入所獲得的經濟增值比例(未考慮初投資等成本)。當然,經濟火用效率和經濟火用系數是否合理,與熱/電(功)售價比、電(功)與燃料的價格比等定得正確與否有關。實際上,影響熱、電(功)售價的因素很多,經濟火用效率和經濟火用系數用來進行化工熱能動力多聯產系統的設計優化,存在一定的不確定性。

3能量綜合梯級利用率

[6]20世紀80年代初,我國著名科學家吳仲華先生提出各種不同品質的能源要合理分配、對口供應,做到各得其所,并從能量轉化的基本定律出發,闡述了熱能綜合梯級利用與品位概念,倡導按照“溫度對口、梯級利用”能源高效利用的原則。近期,相關研究從物理能(熱能)的梯級利用擴展到化學能與物理能綜合梯級利用,提出冷-熱-電聯產系統能量梯級利用率與化工熱能動力聯產系統能量梯級利用率等新準則。在能源動力系統中,物質化學能通過化學反應實現其能量轉化。因此,物質能的轉化勢必與其發生化學反應的做功能力(吉布斯自由能變化△G)和物理能的最大做功能力(物理火用)緊密相關。對于一個化學反應的微分過程,存在如下關系:dE=dG+TdSηc。(5)式(5)中,dE———過程物質能的最大做功能力變化;dG———吉布斯自由能變化;TdS———過程中以熱形式出現的能量;T———反應溫度,K;dS———過程熵變化;ηc———卡諾循環效率,ηc=1-T0/T;T0———環境溫度,K。上式描述物質火用、化學反應吉布斯自由能和物理火用的普遍關系。從而揭示如何分別通過化學反應過程和物理過程實現物質dE的逐級有效轉化與利用。在此基礎上,定義表征聯產系統化學能梯級利用特征的化學能梯級利用收益率,如式(6):Rgain=ΔEthnetEs-(Ep+Ethnet)。(6)式(6)中,Rgain———聯產系統化學能梯級利用收益率;ΔEthnet———聯產系統熱轉功循環所得熱火用相對于分產系統的增長量;Es-(Ep+Ethnet)———從分產系統看,進入系統的化學火用(Es)除部分轉移到產品中(Ep)、部分轉化為熱轉功循環的有效凈熱火用(Ethnet),其余均消耗或損失于系統內部。這部分化學火用損失即為聯產系統化學火用梯級利用的最大潛力。因此,Rgain代表了多聯產系統化學能梯級利用的收益占分產系統的化學火用損失(化學火用利用潛力)的比例,即聯產系統通過集成整合成的化學能梯級利用收益率。它是量化描述聯產系統中化學能品位梯級利用水平的一個最重要指標。若在化工動力聯產系統集成時,以化學能收益率Rgain作為優化目標,把化學能梯級利用水平與系統集成特征變量和獨立設計變量以及聯產系統性能特性等關聯起來,就可構建基于化學能梯級利用準則的多聯產系統設計優化方法。

4基于能源-環境-經濟的綜合評價體系

基于火用的概念,系統輸出熱的火用值要低于本身熱值,把它與功相比時要打一個折扣,常借助卡諾循環效率所表達的熱轉化為功的理論限度來給有效熱輸出打個折扣,以區分熱與功的不等價性。但是,化工產品的火用值與熱工能量的火用值則難以比較。隨著經濟的發展,能源、環境問題日益突出,由此而誕生的能源、環境、經濟等綜合的評價準則受到重視。專家們試圖從多目標綜合層面來評估多聯產系統。能源(Energy)、環境(Environment)、經濟(Economy)系統是一個有機的整體,同時存在著相互影響、相互制約的發展關系。近些年來,世界各國政府、研究機構以及專家學者都深刻地認識到能源、經濟以及環境之間的相互作用對于解決能源問題的重要影響,開始將三者結合起來綜合考慮能源問題,探求綜合平衡與協調發展,從而形成了3E系統理論的研究框架,并取得大量的理論與實踐成果[7]。這些問題的研究涉及多個學科領域,不同專業的學者選擇了不同的研究視角與方法,得到的結論也有所差別。然而,他們的研究都在更多地使用數量經濟學、系統工程以及運籌學的方法對能源、環境、經濟三者之間的關系和內部規律進行定量分析。國內外基于能源-環境-經濟對化工-熱能-動力多聯產進行評價研究不足,本文探索建立評價體系,利用多項指標進行測算,多角度全面刻畫出系統的特性。從而為項目的前期決策,為地區能源、環境、經濟協調發展機制的建設以及社會經濟宏觀發展目標的制定提供數據支持與決策依據。能源、環境、經濟(3E)分析一般采用協調度評價,應用的理論和采用的方法雖不盡相同,均力圖通過量化概念反映出來,但這個量化的數值沒有辦法直接表明其所處的狀態性質。本文將能源、環境、經濟分析用于化工熱能動力多聯產系統,分成一級要素和二級要素,并確定權重,根據設定的評分依據分5個等級,進行綜合評價。這樣就使得原來復雜的協調度概念變得更加簡單,同時也更加實用[5]。評價指標選取那些使用頻度較高的指標,進行分析、比較、綜合,并采用專家評分法對指標進行調整,使得評價具有可操作性[8]。基于能源-環境-經濟(3E)對化工熱能動力多聯產項目進行綜合評價的思路及其相應步驟如下:合理選定一級及二級要素,并分別確定其權重;進行評價要素分析,根據技術發展水平等確定最優標準;計算對應化工熱能動力多聯產項目的分值,進行綜合評價。具體如下。建立評價體系分析模型,選定環境保護、資(能)源利用效率和技術經濟指標為一級要素;SO2排放強度、NOx排放強度、中水回用率、一般固廢綜合利用率、CO2減排潛力、能源轉化效率、能耗指標、水耗指標、內部收益率、區域經濟帶動等為二級要素。根據環保優先、合理和節約利用資源、效益良好和區域經濟帶動等原則,合理確定各級要素的權重,再根據業內專家調整,得到化工熱能動力多聯產項目評價體系權重。根據化工熱能動力多聯產的項目的不同,相關二級要素會有所調整,對應評價體系權重也會根據產品種類、生產規模、工藝路線、公用工程配置等諸多因素進行針對性的調整。進行評價要素分析,根據技術發展水平等確定最優標準。4.1.2.1環境保護要素特征污染物指的是能夠反映某種行業所排放污染物中有代表的部分。不同的化工生產對應的主要污染物排放并不相同。但從化工及熱能動力系統的行業特點出發,SO2、NOx為最基本的特征污染物。中水回用,一方面為供水開辟了第二水源,大幅度降低新鮮水的消耗量;另一方面在一定程度上減輕污廢水對水源的污染。目前,世界上無論是水資源豐富還是水資源相對緊缺的國家都將中水回用作為節約用水、加強環境保護的一項重要舉措。化工熱能動力多聯產項目一般耗水量較大,務必提高中水回用率,提高水的重復利用和循環使用率。一般固廢綜合利用率指一般固體廢物綜合利用量占一般固體廢物產生量的百分率。《節能環保產業“十二五”發展規劃》中,資源綜合利用被明確為除節能和環保之外重點支持的產業。提高一般固廢綜合利用率可以實現資源利用和環境保護的雙重目標。近年來巨大的能源消耗和溫室氣體排放使我國承受了很大的壓力。我國CO2氣體減排的任務很重。化工和電力行業CO2的排放較大,有效實施化工能源動力多聯產,也是降低CO2排放的舉措。特別是煤化工項目,應采用有效控制CO2排放的能源利用技術路線。環境保護要素取值參照相關污染物排放標準、政策文件及同等項目國內外先進水平確定,在此基礎上,對項目進行評價。化工行業整體能源、資源消耗量大,選定能源轉化效率、能耗、水耗等要素,總體上可以體現其資(能)源利用水平。參照國內外先進水平,在此基礎上進行總體評價。能源轉化率采用熱力學第一定律計算,能耗指標按照噸產品的資(能)源消耗確定,水耗指標為加工和轉換單位資(能)源消耗的水資源。技術經濟評價要素一方面評價項目自身的財務效益,同時也關注項目建設對區域經濟帶動、產業結構調整的影響,主要包括:項目財務內部收益率及區域經濟帶動指標等。項目財務內部收益率參照行業內的先進制進行評定,區域經濟帶動綜合考慮項目對地區經濟發展的影響。[9]根據上述評價系統確定的權重和評分依據,將分值分成5個等級,進行綜合評價。隨著我國能源戰略多元化進程的加快,我國烯烴工業發展將進一步提升原料多元化,適度減少石化工業發展對原油資源的依賴,進一步提升煤制烯烴產業的發展水平。下面針對三個烯烴項目,應用能源-經濟-環保評價體系進行綜合評價。建立評價體系分析模型,合理確定各級要素及權重,如表1所示。根據煤制烯烴的先進指標,結合GB13223—2011《火電廠大氣污染物排放標準》、《大宗工業固體廢物綜合利用“十二五”規劃》、GB8978—1996《污水綜合排放標準》等相關污染物排放標準、政策文件及同等項目國內外先進水平確定(表2)。煤制烯烴產業為高耗能、耗水產業,資(能)源利用效率要素從能源轉化效率、能耗、水耗三方面評價(表3)。含財務內部收益率和區域經濟帶動兩項,見表4。根據上述評價系統確定的權重和評分依據,整理確定最終的評價標準,如表5所示。針對三個煤制烯烴項目,參照以上的評價標準進行評定,如表6所示。根據表6并結合能源-環境-經濟綜合評價法,做出如下解釋。(1)通過該綜合評價法,能夠針對不同項目或同一項目的不同方案,進行分析評價。例如,表6中項目一(方案一)雖然環保要素和資(能)源利用效率要素優異,但相對技術經濟指標較低,通過綜合考慮,總體評價分值仍較高,而項目三(方案三)以降低環保和資(能)源利用效率為代價獲取經濟效益,總體評價較低。(2)能源-環境-經濟綜合評價中,根據項目不同,選取的權重及分值標準等會有所不同,但是基本上,同類別的項目均具有一定的可比性。(3)能源-環境-經濟綜合評價適用于不同方案及不同項目的分析對比,選出在能源-環境-經濟等方面更優的方案及項目。(4)能源-環境-經濟綜合評價體系融合了能源-環境-經濟等因素,綜合協調了進行方案或項目分析時節能不環保、節能不經濟、環保不節能、環保不經濟等能源、經濟和環保之間的矛盾,平衡了相關各方的利益,力圖實現社會效益、環境效益和經濟效益的統一。(5)本文中能源-環境-經濟綜合評價評價體系有待于進一步完善,實現權重和分值的劃定更科學,計算能源-環保-經濟的協調度,并用于指導方案和項目的優化,推動技術進步。

煤化工熱能動力多聯產系統有效集成和耦合了化工生產、熱電聯產、熱力供應、動力驅動等子系統,能夠實現資源和能源的有效利用,實現化工與動力、能量梯級利用與物質高效轉化的有機結合,突破單一行業提高效率、改善經濟性、控制排放的局限性。化工熱能動力多聯產系統的特點為多能源輸入、多產品輸出。化工熱能動力多聯產系統的發展需要科學合理的評價指標體系,便于總體上評價系統的性能,并進而指導系統的優化。目前常用的系統性能評價指標主要為熱效率、相對節能率、火用效率、經濟火用效率、經濟火用系數等。能量的綜合梯級利用從多聯產集成的本質出發,為多聯產系統設計優化提供新的思路。傳統的熱力學性能指標難以全面科學評估其性能,應用不同的評價準則常常出現不同、甚至矛盾的結論。為此,單獨作為系統設計的優化的主要目標函數也并不科學。近年來,能源、環境問題日益突出,由此而誕生的能源、環境、經濟綜合評價準則受到重視,并逐漸應用于分析地區能源、環境、經濟協調發展。本文將能源-環境-經濟綜合評價法用于煤化工熱能動力多聯產系統,并采用全工況概念進行分析,多目標綜合層面來評估多聯產系統,更貼近實際運行情況,具有一定的實際意義。

本文作者:陳希章吳曉峰龔華俊白頤曲風臣工作單位:石油和化學工業規劃院