學(xué)生數(shù)學(xué)教學(xué)解題能力研究論文
時(shí)間:2022-03-05 03:06:00
導(dǎo)語:學(xué)生數(shù)學(xué)教學(xué)解題能力研究論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
中學(xué)數(shù)學(xué)教學(xué)的目的,歸根結(jié)底在于培養(yǎng)學(xué)生的解題能力,提高數(shù)學(xué)解題能力是數(shù)學(xué)教學(xué)中一項(xiàng)十分重要的任務(wù)。提高學(xué)生解題能力始終貫穿于教學(xué)始終,我們必須把它放在十分重要的位置。那么,如何才能提高學(xué)生的解題能力,具體方法上講主要可以從以下幾方面入手:
一、培養(yǎng)“數(shù)形”結(jié)合的能力
“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小兩個(gè)屬性,就交給了教學(xué)去研究了。初中數(shù)學(xué)兩個(gè)分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形整合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分。到了高中就出現(xiàn)了專門用代數(shù)方法研究幾何問題的一門課,叫做“解析幾何”。在初二建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖像了。往往借助圖像能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾上了一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番。這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人就會(huì)慢慢養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
二、培養(yǎng)“方程”的思維能力
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)的等式:速度ⅹ時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、分式方程,到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際運(yùn)用,都需要建立方程,通過解方程來求出結(jié)果。因此同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。所謂的“議程”思維就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。三、培養(yǎng)學(xué)生數(shù)學(xué)“轉(zhuǎn)化”思維能力
解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡,化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變?yōu)橐粋€(gè)大家熟知的簡單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運(yùn)算把它解決。比如,我們學(xué)校要擴(kuò)大校園面積,需要向鎮(zhèn)上征地。鎮(zhèn)上給了一塊形狀不規(guī)則的地,如何丈量的它的面積呢?首先使用小平板儀(有條件的話,可使用水準(zhǔn)儀或經(jīng)緯儀)依據(jù)一定的比例,將實(shí)際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長方形、三角形,利用學(xué)過的面積計(jì)算方法,計(jì)算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計(jì)算的不規(guī)則圖形轉(zhuǎn)化成了可以計(jì)算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化為一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。“轉(zhuǎn)化”的思想,是解題最重要的思維習(xí)慣。面對(duì)難題,面對(duì)沒有見過的題,首先就要想到轉(zhuǎn)化,也總是能夠轉(zhuǎn)化的。平時(shí),要多留心老師是怎樣解題的,是怎樣“化難為易,化繁為簡,化未知為已知”的。同學(xué)之間也應(yīng)多交流交流成功轉(zhuǎn)化的體會(huì),深入理解轉(zhuǎn)化的真正含義,切實(shí)掌握轉(zhuǎn)化的思維和技巧。
四、培養(yǎng)“對(duì)應(yīng)”的思維能力
“對(duì)應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”。隨著學(xué)習(xí)的深入,我們將對(duì)應(yīng)擴(kuò)展到對(duì)應(yīng)一種關(guān)系、對(duì)應(yīng)一種形式等等。比如我們?cè)谟?jì)算或化簡中,將對(duì)應(yīng)公式的左邊X,對(duì)應(yīng)A;Y對(duì)應(yīng)B;再利用公式的右邊直接得出原式的結(jié)果。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來解題。初二初三我們將看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)。“對(duì)應(yīng)”思想在今后的學(xué)習(xí)中將會(huì)發(fā)生越來越大的作用。
五、增強(qiáng)自信是解題的關(guān)鍵
自信才能自強(qiáng),在考試中,總是看到有些同學(xué)的試卷出現(xiàn)許多空白,有好多題根本沒有動(dòng)手去做。俗話說,藝高膽大,(轉(zhuǎn)上頁)(接下頁)藝不高就膽不大。但是做不出是一回事,沒有去做又是另一回事。稍微難一點(diǎn)的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才能顯現(xiàn)出條件和結(jié)論之間的某種聯(lián)系,整個(gè)思路才會(huì)明朗清晰起來。沒有動(dòng)手去做,又怎么知道自己不會(huì)做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也
同樣要去分析研究,找到正確的思路后才能講授。不敢去做稍微復(fù)雜一點(diǎn)的題(不一定是難題,有些題只不過是敘述多一點(diǎn)),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識(shí)范疇,不管哪道題,總是能用自己所學(xué)過的知識(shí)把它解出來。要敢于去做題,要善于去做題。這就叫做在“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。具體解題時(shí),一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個(gè)條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性。抓住這一道題與這一類題不同的地方,數(shù)學(xué)題幾乎沒有相同的,總有一個(gè)或幾個(gè)條件不相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會(huì)做,其他題就不會(huì)做,只會(huì)依樣畫瓢,題目有些小的變化就無從下手。當(dāng)然做題先從哪兒下手是一件棘手的事,不一定找得準(zhǔn)。但是,做題一定要抓住其特殊性則絕對(duì)沒錯(cuò)。選擇一個(gè)或幾個(gè)條件作為解題的突破口,看由這個(gè)條件能得出什么,得出的越多越好,然后從中選擇其它條件有關(guān)的,進(jìn)行推算或演算。一般難題都有多種解法,條條大道通羅馬。要相信利用這道題的條件,加上自己學(xué)過的那些知識(shí),一定能推出正確的結(jié)論。數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識(shí),掌握了必要的數(shù)學(xué)思想和方法,就能順利地對(duì)付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵在于你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是熟能生巧,加快速度,節(jié)省時(shí)間,這一點(diǎn)在考試中時(shí)間有限制時(shí)顯得尤為重要;二是利用做題來鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。解題需要豐富的知識(shí),更需要自信心。沒有自信心就會(huì)畏難,就會(huì)放棄。只有自信才能勇往直前,才不會(huì)輕言放棄,才會(huì)加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。