變頻器發(fā)展趨勢探討論文
時間:2022-10-09 04:44:00
導(dǎo)語:變頻器發(fā)展趨勢探討論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
論文關(guān)鍵詞:電磁輻射;電磁干擾
論文摘要:目前我們?nèi)粘K褂玫囊恍в谢蚴褂?a href="http://www.ushengzhilian.com/lunwen/jixielunwen/jxbylw/200910/275602.html" target="_blank">變頻器驅(qū)動系統(tǒng)的設(shè)備都會產(chǎn)生大量的高次諧波,這種嚴(yán)重的電磁輻射是我們平時用肉眼看不到的隱形殺手,無論是對我們的身體健康,還是對精密儀器的使用,它都有嚴(yán)重的危害性,而且影響深遠(yuǎn)。
變頻器是運(yùn)動控制系統(tǒng)中的功率變換器。目前的運(yùn)動控制系統(tǒng)包含多種學(xué)科的技術(shù)領(lǐng)域,總的發(fā)展趨勢是驅(qū)
動的交流化、功率變換器的高頻化、控制的數(shù)字化、智能化和網(wǎng)絡(luò)化。因此,變頻器作為系統(tǒng)的重要功率變換部件,因提供可控的高性能變壓變頻的交流電源而得到迅猛發(fā)展。
變頻器的快速發(fā)展得益于電力電子技術(shù)、計算機(jī)技術(shù)和自動控制技術(shù)及電機(jī)控制理論的發(fā)展。變頻器的發(fā)展水平是由電力電子技術(shù)、電機(jī)控制方式以及自動化控制水平三個方面決定的。當(dāng)前競爭的焦點(diǎn)在于高壓變頻器的研究開發(fā)生產(chǎn)方面。
隨著新型電力電子器件和高性能微處理器的應(yīng)用以及控制技術(shù)的發(fā)展,變頻器的性能價格比越來越高,體積越來越小,而且廠家仍在不斷地提高可靠性,為實(shí)現(xiàn)變頻器的進(jìn)一步小型輕量化、高性能化和多功能化以及無公害化而做著新的努力。辨別變頻器性能的優(yōu)劣,一要看其輸出交流電壓的諧波對電機(jī)的影響;二要看對電網(wǎng)的諧波污染和輸入功率因數(shù);最后還要看本身的能量損耗(即效率)。這里僅以量大面廣的交—直—交變頻器為例,闡述其發(fā)展趨勢:主電路功率開關(guān)元件的自關(guān)斷化、模塊化、集成化、智能化;開關(guān)頻率不斷提高,開關(guān)損耗進(jìn)一步降低。
在變頻器主電路的拓?fù)浣Y(jié)構(gòu)方面。變頻器的網(wǎng)側(cè)變流器對低壓小容量的裝置常采用6脈沖變流器,而對中壓大容量的裝置采用多重化12脈沖以上的變流器。負(fù)載側(cè)變流器對低壓小容量裝置常采用兩電平的橋式逆變器,而對中壓大容量的裝置采用多電平逆變器。對于四象限運(yùn)行的轉(zhuǎn)動,為實(shí)現(xiàn)變頻器再生能量向電網(wǎng)回饋和節(jié)省能量,網(wǎng)側(cè)變流器應(yīng)為可逆變流器,同時出現(xiàn)了功率可雙向流動的雙PWM變頻器,對網(wǎng)側(cè)變流器加以適當(dāng)控制可使輸入電流接近正弦波,減少對電網(wǎng)的公害。
脈寬調(diào)制變壓變頻器的控制方法可以采用正弦波脈寬調(diào)制控制、消除指定次數(shù)諧波的PWM控制、電流跟蹤控制、電壓空間矢量控制(磁鏈跟蹤控制)。
交流電動機(jī)變頻調(diào)整控制方法的進(jìn)展主要體現(xiàn)在由標(biāo)量控制向高動態(tài)性能的矢量控制與直接轉(zhuǎn)矩控制發(fā)展和開發(fā)無速度傳感器的矢量控制和直接轉(zhuǎn)矩控制系統(tǒng)方面。微處理器的進(jìn)步使數(shù)字控制成為現(xiàn)代控制器的發(fā)展方向。運(yùn)動控制系統(tǒng)是快速系統(tǒng),特別是交流電動機(jī)高性能的控制需要存儲多種數(shù)據(jù)和快速實(shí)時處理大量信息。
近幾年來,國外各大公司紛紛推出以DSP(數(shù)字信號處理器)為基礎(chǔ)的內(nèi)核,配以電機(jī)控制所需的外圍功能電路,集成在單一芯片內(nèi)的稱為DSP單片電機(jī)控制器,價格大大降低、體積縮小、結(jié)構(gòu)緊湊、使用便捷、可靠性提高。
在DSP出現(xiàn)之前數(shù)字信號處理只能依靠MPU(微處理器)來完成。但MPU較低的處理速度無法滿足高速實(shí)時的要求。隨著大規(guī)模集成電路技術(shù)的發(fā)展,1982年世界上首枚DSP芯片誕生了。這種DSP器件采用微米工藝NMOS技術(shù)制作,雖功耗和尺寸稍大,但運(yùn)算速度卻比MPU快了幾十倍,尤其在語音合成和編碼解碼器中得到了廣泛應(yīng)用。DSP芯片的問世標(biāo)志著DSP應(yīng)用系統(tǒng)由大型系統(tǒng)向小型化邁進(jìn)了一大步。隨著CMOS技術(shù)的進(jìn)步與發(fā)展,第二代基于CMOS工藝的DSP芯片應(yīng)運(yùn)而生,其存儲容量和運(yùn)算速度成倍提高,成為語音處理、圖像硬件處理技術(shù)的基礎(chǔ)。80年代后期,第三代DSP芯片問世,運(yùn)算速度進(jìn)一步提高,其應(yīng)用于范圍逐步擴(kuò)大到通信、計算機(jī)領(lǐng)域。
90年代DSP發(fā)展最快,相繼出現(xiàn)了第四代和第五代DSP器件。現(xiàn)在的DSP屬于第五代產(chǎn)品,它與第四代相比,系統(tǒng)集成度更高,將DSP芯核及外圍組件綜合集成在單一芯片上。這種集成度極高的DSP芯片不僅在通信、計算機(jī)領(lǐng)域大顯身手,而且逐漸滲透到人們?nèi)粘OM(fèi)領(lǐng)域,前景十分可觀。DSP和普通的單片機(jī)相比,處理數(shù)字運(yùn)算能力增強(qiáng)10—15倍,可確保系統(tǒng)有更優(yōu)越的控制性能。數(shù)字控制使硬件簡化,柔性的控制算法使控制具有很大的靈活性,可實(shí)現(xiàn)復(fù)雜控制規(guī)律,使現(xiàn)代控制理論在運(yùn)動控制系統(tǒng)中應(yīng)用成為現(xiàn)實(shí),易于與上層系統(tǒng)連接進(jìn)行數(shù)據(jù)傳輸,便于故障診斷、加強(qiáng)保護(hù)和監(jiān)視功能,使系統(tǒng)智能化。
交流同步電動機(jī)已成為交流可調(diào)轉(zhuǎn)動中的一顆新星,特別是永磁同步電動機(jī),電機(jī)獲得無刷結(jié)構(gòu),功率因數(shù)高,效率也高,轉(zhuǎn)子轉(zhuǎn)速嚴(yán)格與電源頻率保持同步。同步電機(jī)變頻調(diào)速系統(tǒng)有他控變頻和自控變頻兩大類,自控變頻同步電機(jī)在原理上和直流電機(jī)極為相似,用電力電子變流器取代了直流電機(jī)的機(jī)械換向器,如采用交—直—交變壓變頻器時叫做“直流無換向器電機(jī)”或稱“無刷直流電動機(jī)”。傳統(tǒng)的自控變頻同步機(jī)調(diào)速系統(tǒng)有轉(zhuǎn)子位置傳感器,現(xiàn)正開發(fā)無轉(zhuǎn)子位置傳感器的系統(tǒng)。同步電機(jī)的他控變頻方式也可采用矢量控制,其按轉(zhuǎn)子磁場定向的矢量控制比異步電機(jī)簡單。