智能體水產養殖論文

時間:2022-01-28 05:09:01

導語:智能體水產養殖論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

智能體水產養殖論文

1智能體系統設計

1.1信息采集智能體設計信息采集智能體由信息采集模塊和CC2530芯片組成,兩者通過CC2530芯片的通用I/O口相連接,結構如圖2所示。其控制核心為CC2530芯片,該芯片內部集成有A/D轉換器、增強型8051處理器和ZigBee無線單元,負責對各類傳感器進行管理,實現環境因子信息的采集、預處理和發送。信息采集模塊中的溫度傳感器、溶解氧傳感器、pH傳感器等采集到的環境因子數據,通過調理電路,進行濾波和電壓整定,并通過I/O口送入A/D轉換器;增強型8051處理器讀取A/D轉換器數字化處理后的環境因子信息,最終送入ZigBee無線單元,該單元通過射頻信號將數據傳給該養殖池內的信息匯聚智能體。每個養殖池內可以在不同區域設有多個信息采集智能體,供信息匯聚智能體讀取數據,以保證采集數據的可信度。

1.2信息匯聚智能體設計信息匯聚智能體結構如圖3所示。該結構具有兩項功能:一方面起到環境因子數據的中轉作用,按現場監控智能體的要求,采用輪詢的方式讀取本池中各信息采集智能體發送來的數據,并發送給現場監控智能體;另一方面兼有圖像采集與發送功能,利用串口CMOS攝像頭進行養殖物圖像采集,攝像頭通過RS232與CC2530中的無線單元ZigBee相連,由無線單元ZigBee完成圖像向現場監控智能體的傳輸。

1.3環境調節智能體設計環境調節智能體由無線收發模塊和工控機組成,兩者通過RS485相連,如圖4所示。無線收發模塊負責接收現場監控智能體通過無線通信發送過來的環境因子數據,進行解調,最終上傳給工控機。工控機接收到數據后,首先根據其具備的知識對數據進行推理(推理模塊),并將推理結果(調節任務)交給決策模塊進行評價和決策。決策模塊利用已有的知識和各種狀態數據對推理結果進行評價和決策,如果具備執行該任務的能力,則交給控制模塊去執行,否則啟動通信模塊與現場監控智能體進行協商??刂颇K通過設備接口把任務交給執行機構去完成。決策模塊還能通過人機界面向操作員分發報警、決策請求等事件,并接收操作員的輸入信息。工控機強大的控制功能和可擴展性,使得一個環境調節智能體能夠對所有養殖池的環境參數進行調節。系統中的執行機構主要有電磁閥(溫度和pH調節)、水泵、增氧機、攪拌機等,用于調節養殖池中各環境因子,以提供養殖物生長的最佳環境。環境調節智能體對養殖環境的調節采取閉環控制,即執行機構在進行環境調節的同時,該智能體中的無線收發模塊實時讀取養殖池中的各項環境參數,并進行判斷,任一項參數達到調節要求即關閉相應的執行機構。

1.4現場監控智能體設計現場監控智能體由信息收發單元和監控計算機組成,兩者之間通過RS232/485總線連接,其功能結構與環境調節智能體基本相同。信息收發單元負責接收各養殖池中的IGA上傳來的信號,并傳送給監控計算機進行保存,監控計算機通過比較判斷,如需要對環境進行調節,則通過信息收發單元以無線方式通知環境調節智能體工作,實現對養殖環境的閉環控制。監控計算機的另一項任務,是通過信息匯聚智能體定期采集養殖物質體的圖像(此時信息采集智能體處于休眠狀態),并利用專用軟件對采集到的圖像進行處理與診斷,如發現有病變嫌疑則及時報警,避免重大損失的發生。

1.5各智能體間的協作基于多智能體的協同水產養殖監控系統,通過多智能體之間的相互協作,來增強系統的監控能力,系統具有更好的靈活性和魯棒性,便于適應多變的養殖環境,其協作模型如圖5所示。下級智能體接收到上級智能體的任務請求后,根據自身的能力描述和當前狀態,判斷任務是否可以接受:如果處于故障狀態或忙碌狀態,則對該請求進行回絕;如果能接受這項請求,則返回接受信號,對請求的任務進行評

2監控軟件設計

現場監控智能體的監控軟件采用C語言編制,具有參數配置、實時監控、歷史數據和系統說明4個模塊的功能。實時監控模塊用于對養殖水體的溶解氧、溫度、pH以及水位等關鍵因子進行自動監測。每臺計算機同時監測6個養殖池,分池、分監測點以數值的形式顯示關鍵因子,并通過算法綜合判斷,給出養殖環境狀態的提示。如圖6所示為1號池的實時監控界面。歷史數據模塊用于對歷史數據進行查詢。參數配置模塊用于對各養殖池的理想參數進行設置。系統說明模塊提供相關信息服務,并對軟件的使用提供幫助。

3現場試驗

試驗現場選在山東省日照市的某水產養殖有限公司,試驗魚池規格為6m×6m,水深0.5m。魚池中養殖大菱鲆,其適宜的養殖環境為:溫度10~20℃,溶解氧大于6mg/L,pH為7.6~8.2。據此,試驗魚池的初始環境因子參數設置為:溫度17℃,溶解氧7mg/L,pH為7.9。試驗以溫度值的變化為觀測點,以驗證環境調節智能體的工作性能。

(1)系統的測量精度滿足要求。

(2)通過人工措施在10:30的時候使水體溫度降低到15.7℃,此時環境調節智能體開始工作,起動加熱系統給水體加熱,11:21池中的測量溫度為16.6℃。試驗測得加熱時間約為56min42s,水溫達到設定溫度要求,加熱系統自動停止。系統工作效率高于一般的在線監測系統,滿足環境調節要求。

4結論與討論

市場對水產品的個性化需求,使得規?;a養殖向著多樣化發展?;诂F有監控系統在自學習能力和監控范圍方面的局限,結合多智能體系統的功能特點,將多智能體技術引入到規?;a養殖監控系統中,提出了一種基于多智能體的無線傳感網絡協同水產養殖監控系統。通過無線傳感網絡進行環境信息的采集與傳輸,依靠多智能體間的協作,實現信息的處理與反饋。智能體的自學習能力使系統的監控能力得以增強,便于適應多變的養殖環境。同時,系統擴充了圖像處理功能,用于對養殖物質體進行監測,以避免病變帶來的重大損失。試驗結果表明系統的測量精度和調節功能均滿足要求。進一步的研究工作主要在系統的優化、路由改進以及推理與決策算法等方面進行,以期能夠設計出更具實用性的監控系統。

作者:趙明光張賢單位:淮海工學院