算經(jīng)十書數(shù)學(xué)思想分析論文
時(shí)間:2022-09-07 04:46:00
導(dǎo)語:算經(jīng)十書數(shù)學(xué)思想分析論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
摘要:探索和追求精益求精的計(jì)算方法和技巧,講究明確的思想依據(jù),著力于靈活和廣泛的應(yīng)用,是“算經(jīng)十書”的數(shù)學(xué)思想精粹。其發(fā)展主線是沿著探索、完善和提高“推步”前進(jìn)的。它把擅長(zhǎng)計(jì)算的推算和證明的推類結(jié)合起來,形成獨(dú)特的傳統(tǒng)風(fēng)格和手段。
關(guān)鍵詞:算經(jīng)十書,傳統(tǒng)數(shù)學(xué)思想,新理解
Abstract:Exploringandstrivingfortheconstantlyimprovingmethodsandtechniquesofcalculation,stressingtheexplicitthinkingbasis,andconcentratingonitsflexibleandwideapplicationisthepithofthemathematicideasofSuanjingshishu,thethreadofwhichisadvancingalongtheexploration,improvementanddevelopmentoftuibu(thescienceofcalculatingtheastronomiccalendar).Itcombinescalculationwithanalogy,andthus,formsitsuniquetraditionalstyleandmethod.
KeyWords:SuanJingShiShu,TraditionalMathematicalThinking,newunderstanding
在世界科學(xué)史中,中國(guó)傳統(tǒng)數(shù)學(xué)是一顆燦爛的明珠。在中國(guó)傳統(tǒng)數(shù)學(xué)中,“算經(jīng)十書”是典型的代表。所謂“算經(jīng)十書”,指的是中國(guó)十部古算書:《周髀算經(jīng)》、《九章算術(shù)》、《孫子算經(jīng)》、《五曹算經(jīng)》、《夏侯陽算經(jīng)》、《張丘建算經(jīng)》、《海島算經(jīng)》、《五經(jīng)算術(shù)》、《綴術(shù)》(元豐年間已失傳,后來以《數(shù)術(shù)記遺》代之)、《緝古算經(jīng)》。唐代時(shí)期,國(guó)子監(jiān)內(nèi)設(shè)算學(xué)館,置有博士、助教,指導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué),規(guī)定這十部書為課本。許多人為這十部算書作注釋,作增補(bǔ)刪改,歷代華夏子孫學(xué)習(xí)它,研究它,中國(guó)數(shù)學(xué)也因它而形成自身的傳統(tǒng)并將此傳統(tǒng)繼承和發(fā)揚(yáng)。“算經(jīng)十書”就其內(nèi)容來說,屬于初等數(shù)學(xué);就其數(shù)學(xué)思想和數(shù)學(xué)方法來說,則是十分高深的。下面,我們闡述其數(shù)學(xué)思想。
1.探索和追求精益求精的計(jì)算方法和技巧
就數(shù)學(xué)內(nèi)容而言,“算經(jīng)十書”以善于計(jì)算而見長(zhǎng),并且這一長(zhǎng)足的發(fā)展還被推進(jìn)到讓世界其他各國(guó)都望塵莫及的地步,這已是中外中算史家的共識(shí)。“算經(jīng)十書”能如此輝煌耀目,是跟它著力探索和追求精益求精的計(jì)算方法和技巧分不開的。
“算經(jīng)十書”中最早的一種《周髀算經(jīng)》,其第一章敘述了西周開國(guó)時(shí)期(約公元前1100年)周公與商高的一段問答。從這段問答中,我們可以見到我國(guó)早期數(shù)學(xué)思想的一些初步端倪。當(dāng)周公問商高“夫天不可階而升,地不可得尺寸而度。請(qǐng)問數(shù)安從出?”時(shí),商高答道:“數(shù)之法出于圓方,圓出于方,方出于矩。矩出于九九八十一。”接著,商高還說:“故折矩以為句廣三,股脩四,徑隅五。既方其外,半之一矩,環(huán)而共盤,得三、四、五。兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”這里,我們可以清新地見到,我們祖先在早期“定天下”、“治天下”時(shí),已經(jīng)看到了數(shù)學(xué)的重要性(如大禹、周公);而掌握到一些數(shù)學(xué)知識(shí)的人(如高商),是注意數(shù)學(xué)思想和數(shù)學(xué)方法的。比如,我們從上述商高答問中,就可以看到,古人理解“數(shù)之所由生”,是將形與量結(jié)合起來考察的。圓和方都是形,而形是有數(shù)量關(guān)系的,從考察形可以探討到“數(shù)之法”,但這形中又包含著豐富的數(shù)量關(guān)系,特別是平方關(guān)系(九九八十一)。數(shù)之法是從圓形和方形開始的。圓是內(nèi)接正多邊形經(jīng)過無數(shù)次的倍邊之后所得到的正多邊形的極限(我國(guó)最早的極限思想,是不是來自于這種“圓出于方”的觀念,希望讀者引起注意)。矩是木匠用的曲尺,形如L,方中的直角,非矩不能作,所以說方出于矩。矩形的面積又不外于二數(shù)相乘,也就是說,要算出來。我國(guó)古代算法好憑口訣,而乘法口訣是從“九九八十一”起的,古人用“九九”作為乘法口訣的簡(jiǎn)稱,故有“矩出于九九八十一”。這里所包含的用數(shù)的性質(zhì)來研究形的性質(zhì)的思想,與古希臘的數(shù)學(xué)思想旨趣相映。古希臘的畢達(dá)哥拉斯定理:a2+b2=c2。而當(dāng)a=b=1時(shí),則
c=,這既不是自然數(shù),也不是自然數(shù)之比,所以不能是可接受的正常的數(shù),被稱為無理數(shù),導(dǎo)致了第一次數(shù)學(xué)危機(jī),從此古希臘數(shù)學(xué)發(fā)展的方向產(chǎn)生了大改變,“幾何化”占了主導(dǎo)地位。[1]商高提出了著名的“句三股四弦五”這個(gè)勾股定理(也稱勾股弦定理、商高定理),是從“折矩”而來然后得“積矩”的,3,4,5及其平方的關(guān)系可以體現(xiàn)出勾股定理,但中國(guó)并沒有由此而產(chǎn)生數(shù)學(xué)危機(jī),也沒有發(fā)生發(fā)展方向的大改變,反而為“幾何代數(shù)化”[2]這個(gè)中國(guó)傳統(tǒng)數(shù)學(xué)發(fā)展主導(dǎo)方向奠定了很好的基礎(chǔ)。中國(guó)早期講究以算的方法去解決實(shí)際數(shù)學(xué)問題,是“數(shù)之所由生”的重要思想。
在古代,不管是西方國(guó)家或中國(guó),數(shù)學(xué)的發(fā)展都跟勾股定理結(jié)下不解之緣,這不是偶然的歷史巧合,而是不同淵源和發(fā)展脈絡(luò)的科學(xué)認(rèn)識(shí)的一種必然交匯,其原因是由人們的實(shí)踐活動(dòng)決定的。作為人類早期的數(shù)學(xué)研究活動(dòng),很自然地會(huì)碰到考察形的性質(zhì)及數(shù)量關(guān)系,直角三角形成為關(guān)注的對(duì)象是在情理之中。正如趙爽所說的,早期先人們(如大禹)能掌握有關(guān)的數(shù)學(xué)知識(shí)是“乃勾股之所由生也”。但不同民族的不同思維方式會(huì)導(dǎo)致數(shù)學(xué)發(fā)展的不同朝向,至少在初等數(shù)學(xué)領(lǐng)域內(nèi)是存在的。古希臘在數(shù)、形簡(jiǎn)單和諧的觀念被打破之后發(fā)生大轉(zhuǎn)向,從重算發(fā)展到重證,發(fā)展到重視幾何證明,往后的趨勢(shì)就是有了這種發(fā)展趨勢(shì)和成果的集大成標(biāo)志——?dú)W氏幾何的產(chǎn)生,它是西方國(guó)家初等數(shù)學(xué)體系確立的標(biāo)志,而中國(guó)此時(shí)并不發(fā)生方向的大改變,而是沿著算的道路繼續(xù)前進(jìn),往廣度和深度上延伸發(fā)展,導(dǎo)致的是中國(guó)傳統(tǒng)數(shù)學(xué)體系的形成——《九章算術(shù)》的出現(xiàn)。《九章算術(shù)》中有許多具有世界意義的成就,如負(fù)數(shù)計(jì)算、分?jǐn)?shù)計(jì)算、聯(lián)立一次方程解法等,正是沿著探索計(jì)算的方法和技巧前進(jìn)的結(jié)果。可貴的是,我們的祖先在此數(shù)學(xué)思想的指導(dǎo)之下,并不以原有的結(jié)果為滿足,沒有停留在原有的水平上裹足不進(jìn),而是精益求精地深入下去。如《九章算術(shù)》246道題,有解題方法202“術(shù)”,在當(dāng)時(shí)有如此輝煌成績(jī)已難能可貴,但三國(guó)魏晉時(shí)期的劉徽,就在《九章算術(shù)》的基礎(chǔ)上,仔細(xì)作注,不但為《九章》提供了系統(tǒng)的理論依據(jù),而且大力向前推進(jìn),提出了許多創(chuàng)見,將探討和講究精益求精的計(jì)算方法和技巧這種數(shù)學(xué)思想,提到一個(gè)更高的水平,并對(duì)后世的發(fā)展帶來了深刻的實(shí)際影響,如他發(fā)現(xiàn)的割圓術(shù),為后來祖沖之求得更精確的π值奠定了基礎(chǔ),唐李淳風(fēng)注《九章算術(shù)》時(shí)說:“劉徽特以為疏,遂乃改張其率,但周徑相乘數(shù)難契合。祖沖之以其不精,就中更推其數(shù)。”劉徽本人告誡人們他所得到的“徽率”太小,后人也正是沿著劉徽的思想方法再繼續(xù)前進(jìn),將π值愈推愈精確。在求積問題上,劉徽也有突破,他提出了推求球體積的著名的“牟合方蓋”理論,之后,祖暅在劉徽研究的基礎(chǔ)上,精益求精,得到了聞名于世的“祖暅定理”,并具體求出了“牟合方蓋”。這長(zhǎng)江后浪推前浪,一浪更比一浪高的中國(guó)高超的算法技巧,正是在一條清晰的傳統(tǒng)思維途徑――探索和講求精益求精的計(jì)算方法和技巧中進(jìn)行和取得成就的。如《張丘建算經(jīng)》自序中這樣寫道:“其夏侯陽之方倉(cāng),孫子之蕩杯,此等之術(shù)皆未得其妙。故更造新術(shù)推盡其理。”在探索精益求精的算法道路上更上一層樓,就是《張丘建算經(jīng)》的數(shù)學(xué)指導(dǎo)思想,正是在此思想的指導(dǎo)之下,出現(xiàn)了舉世聞名的“百雞問題”。
2.講究明確的思想依據(jù)
數(shù)學(xué)思想研究的是數(shù)學(xué)產(chǎn)生和發(fā)展的思想方法和思想依據(jù)。“算經(jīng)十書”不僅在數(shù)學(xué)知識(shí)上光彩耀目,在數(shù)學(xué)思想上也獨(dú)樹一幟,其顯著的特點(diǎn)是對(duì)于作為每項(xiàng)有意義的數(shù)學(xué)成果,都講究其明確的思想依據(jù)。
劉徽精細(xì)地注釋了《九章算術(shù)》,從而確立了中國(guó)傳統(tǒng)數(shù)學(xué)理論體系。劉徽的數(shù)學(xué)思想和方法,對(duì)后世影響極深。如王孝通在《上緝古算經(jīng)表》中云:“徽思極毫芒,觸類增長(zhǎng)。”說劉徽的思想方法是“一時(shí)獨(dú)步”。而劉徽對(duì)自己所接觸和研究的數(shù)學(xué),是十分講究明確的思想依據(jù)的。“算經(jīng)十書”中有二部與他密切相關(guān)。《九章算術(shù)》由于有了劉徽注,從此中國(guó)傳統(tǒng)數(shù)學(xué)有了自己的理論體系;他在注《九章算術(shù)》時(shí)補(bǔ)撰“重差”,其單行本即《海島算經(jīng)》。劉徽注《九章算術(shù)》時(shí),十分講究數(shù)理之道要有明確的思想依據(jù)。在《九章算術(shù)》注原序中,劉徽說:“徽幼習(xí)《九章》,長(zhǎng)再詳覽。觀陰陽之割裂,總算術(shù)之根源,探賾之暇,遂悟其意。是以敢竭頑魯,采其所見,為之作注。事類相推,各有攸歸,故枝條雖分而同本干者,知發(fā)其一端而已。又所析理以辭,解體用圖,庶亦約而能周,通而不黷,覽之者思過半矣。”在“圓田術(shù)”注中,劉徽寫道:“不有明據(jù),辯之斯難”,于是,他在創(chuàng)造“割圓術(shù)”的同時(shí),還告訴人們此種創(chuàng)造是有依據(jù)的:“謹(jǐn)接圖驗(yàn),更造密率。恐空設(shè)法,數(shù)昧而難譬。故置諸檢括,謹(jǐn)詳其記注焉。”在“開立圓”(由球的體積以開立方的方法求其直徑)注中,劉徽創(chuàng)立了“牟合方蓋”理論,他不僅介紹了有關(guān)方法,而且還言明思想依據(jù),“互相通補(bǔ),……觀立方之內(nèi),盒蓋之外,雖衰殺有漸,而多少不掩。判合總結(jié),方圓相纏,濃纖詭互,不可等正。”但他又擔(dān)心依據(jù)不足,惟恐理法相違,專門作了交待,以待后人獲得更嚴(yán)密的依據(jù):“欲陋形措意,懼失正理。敢不闕疑,以俟能言者”。從中我們不僅見到先哲們對(duì)探討數(shù)理的思想依據(jù)的重視,也深深領(lǐng)悟到他們治學(xué)嚴(yán)謹(jǐn)?shù)母呱酗L(fēng)范。在談到將割圓術(shù)作為解決有關(guān)極限問題的工具時(shí),劉徽也闡述了其思想依據(jù):“數(shù)而求窮之者,謂以情推,不用算籌”(“陽馬術(shù)”注)。意思是說,數(shù)學(xué)中凡解決有關(guān)無窮之類問題時(shí),不必用算籌去計(jì)算,應(yīng)當(dāng)用數(shù)學(xué)思想去把握。再拿《海島算經(jīng)》來說,劉徽為什么要寫《海島算經(jīng)》呢?其思想依據(jù)是什么?在《九章算術(shù)》劉徽注原序中,劉徽清楚的說明“蒼等為術(shù)猶未足以博盡群數(shù)也”,于是“輒造重差,并為注解,以究古人之意,綴于句股之下”,“以闡世術(shù)之美”。而造“重差”此術(shù)的思路是:要測(cè)量不可到達(dá)目的物的高和遠(yuǎn)時(shí),一次測(cè)望不夠,于是采用二次測(cè)望、三次測(cè)望、四次測(cè)望,即“度高者重表,測(cè)深者累矩”(“重表”或“累矩”就是用表或矩測(cè)望兩次)、“孤離者三望”、“離而又旁求者四望”。更為深刻的是,劉徽并不是勉強(qiáng)、被動(dòng)地去考究數(shù)學(xué)知識(shí)之思想依據(jù)的,他認(rèn)為數(shù)學(xué)思想與數(shù)學(xué)知識(shí)之間本身具有非常緊密的聯(lián)系,他用庖丁解牛來闡述此層道理:“更有異術(shù)者,庖丁解牛,游刃理間,故能歷久其刃如新。夫數(shù)猶刃也,易簡(jiǎn)用之則動(dòng)中庖丁之理,故能和神愛刃,速而寡尤”(《九章算術(shù)》方程術(shù)注)。
自劉徽之后,“算經(jīng)十書”的著者都較注意闡述算理要有明確的思想依據(jù),如四庫(kù)總目提要中稱:《張丘建算經(jīng)》之體例,皆設(shè)為問答,以參校而中明之,簡(jiǎn)奧古質(zhì),與近求不同,而條理精密,實(shí)能深究古人之意。正因?yàn)榇藭⒁庵v究數(shù)學(xué)的思想依據(jù),因而對(duì)掌握數(shù)學(xué)知識(shí)的來龍去脈很有益處,“故唐代頒之算學(xué),以為專業(yè)”。就是在我國(guó)近年的中學(xué)數(shù)學(xué)課本中,還列有《張丘建算經(jīng)》的題目。
此外,“算經(jīng)十書”中關(guān)于數(shù)學(xué)證明的部分,也講究要有明確的思想依據(jù)。[3]
3.著力于靈活和廣泛的應(yīng)用
中國(guó)傳統(tǒng)數(shù)學(xué)十分著力于靈活和廣泛的應(yīng)用。拿“算經(jīng)十書”最早的一部《周髀算經(jīng)》來說,東漢末至三國(guó)時(shí)代的吳國(guó)人趙爽曾對(duì)《周髀算經(jīng)》逐段進(jìn)行詳細(xì)的注釋。在趙爽注釋中有這樣寫道:“禹治洪水,決流江河,望山川之形,定高下之勢(shì),除滔天之災(zāi),釋昏墊之厄,使東注于海而無侵逆,乃句股之所由生也。”又據(jù)《史記•夏本紀(jì)》記載,大禹治水時(shí),“陸行乘車,水行乘舟,泥行乘撬,山行乘攆,左準(zhǔn)繩,右規(guī)矩。”趙爽的注釋和《史記》的記載(山東五梁祠畫像石中有幅大禹治水圖)都說明了我國(guó)早期注意從實(shí)踐中提煉數(shù)學(xué)知識(shí)并將掌握的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)踐中去。《周髀算經(jīng)》中記載的“平矩以正繩,偃矩以望高,覆矩以測(cè)深,臥矩以知遠(yuǎn)。環(huán)矩以為圓,合矩以為方”都充分體現(xiàn)了將數(shù)學(xué)知識(shí)(包括數(shù)學(xué)器具)著力于在實(shí)踐中應(yīng)用的思想。我國(guó)是一個(gè)農(nóng)業(yè)古國(guó),田地面積的量法極需要數(shù)學(xué)為它提供手段,儲(chǔ)囤糧食、建筑城墻、開溝挖渠等都需要有計(jì)算體積的方法,如求方田、廣田、圭田……的面積,求城、……的體積,都十分需要有一定的數(shù)學(xué)工具為人們提供解決問題的手段。我國(guó)古代很早就推行按畝收稅、兩稅法的賦稅制度,兌換、分配的需要以及工商業(yè)的發(fā)展,促進(jìn)和加強(qiáng)了將數(shù)學(xué)知識(shí)應(yīng)用于實(shí)踐。再?gòu)闹袊?guó)封建統(tǒng)治者來看,他們也極需要精確地計(jì)算田畝面積,合理安排賦稅,來發(fā)展封建社會(huì)的經(jīng)濟(jì),鞏固封建王朝的統(tǒng)治。特別是天文歷法,它對(duì)于歷代統(tǒng)治者來說,都是至關(guān)重要的,似乎它就是封建王朝統(tǒng)治者興衰的象征。封建統(tǒng)治者需要頒布?xì)v法,歷法的制定又離不開數(shù)學(xué)。因此,在古代中國(guó),不管是“民間”或“官方”,都要求數(shù)學(xué)研究與實(shí)踐經(jīng)驗(yàn)相結(jié)合。《周髀算經(jīng)》旨在闡明宇宙結(jié)構(gòu)學(xué)說“蓋天說”;《九章算術(shù)》九個(gè)章都與實(shí)踐緊密相關(guān);《海島算經(jīng)》用以解決測(cè)量推算遠(yuǎn)處目的物的高、深、廣、遠(yuǎn)問題;《孫子算經(jīng)》所選的大部分都是解決實(shí)際情況的應(yīng)用題;《夏侯陽算經(jīng)》引用當(dāng)時(shí)流傳的乘除捷法,為的是要解決日常生活中的應(yīng)用問題;《張丘建算經(jīng)》上、中、下三卷,大部分都是涉及到解決測(cè)望、方圓冪積、商功、均輸、方田等現(xiàn)實(shí)的實(shí)際問題;《五曹算經(jīng)》分別敘述計(jì)算各種形狀的田畝面積、軍隊(duì)給養(yǎng)、粟米互換、租稅、倉(cāng)儲(chǔ)容積、戶調(diào)的絲帛和物品交易,即所謂的田曹、兵曹、集曹、倉(cāng)曹、金曹等五曹的應(yīng)用問題;《五經(jīng)算術(shù)》則是力圖將古代經(jīng)籍的注釋中有關(guān)數(shù)字計(jì)算的知識(shí)與歷法、樂律的研究結(jié)合起來,另有旨趣;《數(shù)術(shù)記遺》中載有運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的數(shù)學(xué)器械,如積算、太乙、兩儀、三才、五行、八卦、九宮、運(yùn)籌、了知、成數(shù)、把頭、龜算、珠算、計(jì)數(shù)等。這些,非常雄辯、實(shí)在地體現(xiàn)了我國(guó)傳統(tǒng)數(shù)學(xué)思想的鮮明特色。