光纖通信技術現狀與發展趨勢
時間:2022-05-31 11:20:55
導語:光纖通信技術現狀與發展趨勢一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
摘要:1970年,美國康寧公司成功研制出損耗為20dB的石英光纖,證明光纖作為通信傳輸介質是可行的。同年,GaAIAs異質結半導體激光器在常溫下實現連續工作,為光纖通信提供了光源。從此,光纖通信時代進入高速發展期。我國從1974年開始研究光纖通信技術,因光纖體積小、重量輕、傳輸頻帶極寬、傳輸距離遠、電磁干擾抗性強以及不易串音等優點,發展十分迅速。目前,光纖通信在郵電通信系統等諸多領域發展迅猛,光纖通信優越的性能及強大的競爭力,很快代替了電纜通信,成為電信網中重要的傳輸手段。從總體趨勢看,光纖通信必將成為未來通信發展的主要方式。
關鍵詞:光纖通信技術;特點;發展趨勢
1光纖通信技術概念
光纖通信技術是以光信號作為信息載體、以光纖作為傳輸介質的通信技術。在光纖通信系統中,因光波頻率極高以及光纖介質損耗極低,故而光纖通信的容量極大,要比微波等通信方式帶寬大上幾十倍。光纖主要由纖芯、包層和涂敷層構成。纖芯由高度透明的材料制成,一般為幾十微米或幾微米,比一根頭發絲還細;外面層稱為包層,它的折射率略小于纖芯,包層的作用就是確保光纖它是電氣絕緣體,因而不需要擔心接地回路問題;涂敷層的作用是保護光線不受水氣侵蝕及機械擦傷,同時增加光線的柔韌性;在涂敷層外,往往加有塑料外套。光纖的內芯非常細小,由多根纖芯組成光纜的直徑也非常小,用光纜作為傳輸通道,可以使傳輸系統占極小空間,解決目前地下管道空間不夠的問題。
2光纖通信技術現狀
2.1單模光纖
單模光纖是目前主要應用的一種光纖。80年代后,光纖通信已逐步從短波長的多模光纖轉向長波長的單模光纖應用。隨著光通信系統的發展,最早實用化的常規單模光纖G.652光纖在降低損耗提升帶寬性能方面還有進一步提升空間,而在1.55μm窗口實現最低損耗的色散位移單模光纖G.653實現了這樣的改進。90年代后,密集波分復用(DWDM)技術迅速發展,使光纖傳輸容量極大提高,而四波混頻會引起復用信道間串擾,嚴重影響WDM系統性能,為適應需要,非零色散位移光纖G.655應運而生。
2.2波分復用(WDM)技術
波分復用(WDM)技術是一項90年代在通信網中扮演重要角色的技術。波分復用技術是將一系列載有信息的不同波長的光信號合成一束,讓其沿著單根光纖傳輸;在接收端再將各個不同波長的光信號分開的通信技術。利用該技術大大增加光纖傳輸容量,降低成本;節省光纖及光中繼器,達到對已建成系統擴容目的。2.3光纖接入技術隨著社會發展,通信信息量在不斷增加,業務的種類也不斷豐富,傳統的語音業務、短信業務已不能滿足人們的信息需求,高速、高保真音視頻等多媒體業務越來越受到人們的青睞。光纖接入技術大幅提升了信息傳輸速度,滿足了人們對信息高速傳輸的需求。光纖接入技術通過主干傳輸網絡和用戶接入兩部分實現光纖入戶,利用光調制解調器,讓用戶享受到高速帶寬資源。
3光纖通信技術發展趨勢
3.1多年來,人們對高速率及大容量的追求不斷推進著光纖通信技術的發展
如何最大化的拓展光纖帶寬,成為各國不斷研究目標。目前國際上利用波分復用(WDM)和光時分復用(OTDM)技術提升光纖系統容量。為了提高光纖通信系統的傳輸容量,光波長分割復用技術經歷了三個階段,即波分復用(WDM)、密集波分復用(DWDM)和光頻分復用(OFDM)技術,系統傳輸容量隨著技術的發展成千倍提升,目前容量1.6Tbit/s的波分復用系統已得到大量商用,全光傳輸的距離也在大幅提升。另一種提升傳輸容量的方式是采用光時分復用(OTDM)技術,不同于WDM技術通過增加光纖傳輸信道數量來提升容量,OTDM技術是通過提升信道傳輸速率來提高容量,其單信道最高速率已達640Gbit/s。利用波分復用技術,把多個OTDM信號進行復用,WDM/OTDM混合傳輸系統可以進一步提高光纖通信系統的傳輸容量。偏振復用(PDM)技術可以大幅減弱信道間的相互作用,將頻譜效率提高一倍。利用占空較小的歸零(RZ)編碼信號,降低了光纖通信系統對色散管理分布的要求,且RZ編碼適應性較強,因此現在的超大容量WDM/OTDM通信系統通常采用RZ編碼作為傳輸方式。
3.2光孤子通信
在光纖反常色散區,由于色散和非線性效應相互作用而產生光學孤子。孤子是一種特別的波,它可以傳輸很長距離不變形,特別適用超長距離、超高速的光纖通信系統。光孤子通信就是以光孤子作為載體的通信方式,它實現信號波長在長距離傳輸過程中無畸變,在零誤碼的情況下信息可傳遞萬里。光孤子通信未來的前景是利用傳輸速度方面優勢進行超長距離的高速通信,通過時域和頻域的超短脈沖控制技術,使現行速率提高十倍以上;利用重定時、整形、再生技術,同時減少ASE,增大傳輸距離,使傳輸距離提高到十萬公里以上;獲得低噪聲高輸出性能。雖然目前光孤子通信技術仍存在許多難題,但已取得很大進展,人們相信光孤子通信在大容量、超長距、高速、的全光通信中有著巨大的發展前景。
3.3全光通信網
隨著人類社會信息化速度加快,人們對通信容量和帶寬的需求也呈現加速增長的趨勢,通信網兩大組成部分,即傳輸和交換,都在不斷發展和革新。隨著波分復用技術的成熟,傳輸系統容量的增長給交換系統的發展帶來壓力和動力。未來交換系統運行速率會越來越高,而目前電子交換和信息處理網絡能力已接近極限,無法滿足要求,在交換系統中引入光子技術,實現光交換、光交叉連接和光分叉復用勢在必行,未來的高速通信網將是全光網。全光網是光纖通信技術發展的理想階段,傳統的光網絡只是實現了節點之間的全光化,但在網絡結點處仍采用電器件,從而限制了通信網總容量的提升,真正的全光網已成為科研機構的一個重要課題。目前,全光網絡處于初期發展階段,但它的發展前景是不可估量的。未來光通信發展的趨勢是形成一個真正的以WDM技術與光交換技術為主的光網絡系統,消除電光瓶頸,建立純粹的全光網絡,這將是通信技術發展的理想階段。
4結語
隨著人類社會信息化程度的不斷提高,隨著Internet業務和多媒體應用的不斷發展,網絡的業務量正在以指數級的速度迅速膨脹,光纖通信系統作為信息數據的重要支撐平臺,在未來信息社會中起到十分重要的作用。目前,光纖通信系統做為一種最主要的信息傳輸平臺,為人們提供著各類數據信息,保障著人們的生產生活。光纖通信技術的發展也在不斷的提升。從現代通信的發展趨勢來看,光纖通信技術的發展在不斷提升,光纖通信必將成為未來通信發展的主流,真正的全光網絡的時代也會在人類科技水平不斷地提升下如愿到來。
作者:孫建偉 單位:中國電信股份有限公司東莞分公司
參考文獻:
[1]顧畹儀,李國瑞.光纖通信系統[M].北京:北京郵電大學出版社,1999,(11).
- 上一篇:衛星數字通信技術在廣播傳輸中的應用
- 下一篇:光纖通信網絡優化及運行維護